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Chapter 1

Curriculum Vitæ

2015 June Invited researcher - Cambridge University - Peterhouse College

2009 September Mâıtre de Conférences (Associate professor) - Ecole Centrale de Lyon
Environmental fluid mechanics

2009 Feb-Apr Invited researcher - Imperial College London

2007-2008 A.T.E.R. - Teaching Assistant

École Centrale de Lyon - Université Claude Bernard Lyon I

2006-2007 Post-Doctorate
Ecole Centrale de Lyon - Smoke propagation in tunnel fires

2002-2006 PhD in Fluid Mechanics

Politecnico di Torino – École Centrale de Lyon
Mass and Momentum Transfer in the Urban Boundary Layer
Supervisors: Claudio Cancelli and Richard J. Perkins

2000-2002 Environmental Engineer
Hydrogeology, design of soil remediation plants, environmental investigations
Golder Associates S.r.l.
Turin - Italy
Gainesville - Florida (U.S.A.)

1993-1999 Degree in Environmental Engineering
Politecnico di Torino - Italy. Master thesis: Experimental and numerical study of
pollutant transport in ground water

1996-1997 Tecnische Universität Darmstadt – Germany (Erasmus Program)
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Chapter 2

Teaching activity

My teaching activities is composed of three main parts. The first concerns courses, tutorials and labo-
ratory classes in fundamental fluid mechanics. The second addresses the dynamics and the dispersion
in environmental flows, i.e. atmosphere, rivers, groundwater, and flows within enclosed ventilated
spaces. A third part concerns multidisciplinary courses devoted to the assessment of natural and
technological risks, both accidental and chronic. These latter involve lectures on the management of
natural resources, on climate change, and the organisation of student project activities related to the
‘Risk and Environment’ Master (RISE), addressed to students from the faculty of law, economy and
engineering.

Ecole Centrale de Lyon (since 2007)

� Lectures in Climate Change and Geo-engineering, 3rd year course (coordinator P. Salizzoni).

� Lectures in Stochastic Models for Risk Assessment, 3rd year course (coordinator P. Salizzoni).

� Lectures in Hydrogeology, 3rd year course (coordinator P. Salizzoni).

� Lectures in Buildings Natural Ventilation, 3rd year course (coordinator P. Salizzoni).

� Lectures in Management of Natural Resources, 3rd year course (coordinator R. J. Perkins).

� Assessed Tutorials and Laboratory Classes in Fluid Mechanics and Heat Transfer, 1st year course
(coordinator J. Scott).

� Tutorials in Natural and Technological Risks, 3rd year course (coordinator R.J. Perkins).

� Tutorials in River Hydraulics, 3rd year course (coordinator R.J. Perkins).

� Tutorials in Atmospheric Dynamics, 3rd year course (coordinator R.J. Perkins).

� Co-Coordinator of the Master RISE - Risk and Environment, joint program between Ecole Cen-
trale, Lyon 2 University and Lyon 3 University.

Politecnico di Torino (2004-2010)

� Lectures in Environmental Fluid Mechanics, (20h in 2009-10, 24h in 2008-2009, 34h in 2008-2009,
26h in 2007-2008, 45h in 2005-2006), 5th year course (coordinators: G. Chiocchia, C. Cancelli).

� Assessed Tutorials in Environmental Fluid Mechanics: (30h in 2003-2004, 20h in 2005-2006), 5th
year course (coordinator C. Cancelli).
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Chapter 3

Research supervision

My research activities address dispersion of buoyant and passive pollutants in environmental
flows, whose modelling has direct application to the risk assessment and management. Examples
are the pollutant dispersion in the urban atmosphere, the propagation of hot smokes in free
and confined environments, the ventilation of road tunnel in case of fire, the characterization of
atmospheric dispersion of toxic and flammable substances, the transfer within the environment
and food chain of dioxin and other persistent organic pollutants.

PhD students

1. Lei Yiang (Oct 2014 - ), Turbulent mixing in stratified flows within ventilated tunnels,
co-supervision with R.J. Perkins and M. Creyssels.

2. Thomas Coudon (Sept 2014 - ), Modelling atmospheric pollutant dispersion for epidemio-
logical studies: impact of dioxin pollution and breast cancer, co-supervision with B. Férvers
(Centre Léon Bérard - Université Lyon I).

3. Thierry Kubwimana (Mar 2015 - ), Aerodynamics at road-tunnels portals, funded by Centre
d’Etude des Tunnels (CETU), co-supervision with L. Soulhac.

4. Julien Le Clanche (Oct 2010 - Mai 2015), Buoyant releases in ventilated tunnels, Co-
supervision with R.J. Perkins and M. Creyssels.

5. Damien Lamalle (Oct 2011 - Dec 2014), Large eddy simulation of free and impinging plumes,
funded by the Centre Téchinique et Scientifique du Bâtiment (CSTB), co-supervision with
R.J. Perkins and P. Carlotti.

6. Hervé Gamel (Sept 2011 - Feb 2015), Experimental study of flow and dispersion downwind
a 2D obstacle, co-funded by Electricité de France (EdF), co-supervision with L. Soulhac.

7. Nabil Ben Salem (Oct 2010 - Sept 2014), Direct and inverse modelling of atmospheric
pollutant dispersion in complex geometries, co-supervision with L. Soulhac and R.J. Perkins.

8. Chiara Nironi (Mai 2010 - Sept 2013 ), Concentration fluctuations of a passive scalar in a
turbulent boundary layer, co-supervision with R.J. Perkins.

9. Adam Ezzamel (Oct 2007 - Dec 2011), Free and confined buoyant flows, joint PhD program
Ecole Centrale - Imperial College London, co-supervision with G.R. Hunt and R.J. Perkins.
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Post-doc

Massimo Marro, funded by Région Explora-Pro and ANR (National Research Program) AIRQ,
Atmospheric pollutant dispersion: modelling concentrations fluctuations and inverse modelling.

Master Thesis

1. Ariane Provent (2013), Modelling dioxin atmospheric dispersion over the Lyon urban area,
Ecole Centrele de Lyon - Centre Léon Bérard.

2. Thomas Coudon (2014), Studying the impact of dioxins on breast cancer: localising and
classifying dioxin sources in the Rhône-Alpes Region, Ecole Centrele de Lyon - Centre Léon
Bérard.

3. Kamel Mansouri (2012), Modelling air quality at the district and street scale: models eval-
uation, Ecole Centrele de Lyon - INERIS.

4. Enrico Bergamini (2011-2012), Aerodynamics at tunnel portals, Ecole Centrale de Lyon -
Politecnico di Milano.

5. Enrico Danzi (2011-2012), Plume rise effects in the lower atmosphere: wind tunnel experi-
ments, Ecole Centrale de Lyon - Politecnico di Torino.

6. Carmen Scavone (2008-2009), Experimental study of the thermal effects on the dynamics
and the pollutant dispersion in a street canyon flow, Politecnico di Torino - Ecole Centrale
de Lyon.

7. Fabrizio Alberti (2008-2009), Numerical study of smoke propagation in tunnel, Politecnico
di Torino - Ecole Centrale de Lyon.

8. Alice Montalto (2008-2009), Evaluation of the population exposure to traffic related pollu-
tants in an urban district, Politecnico di Torino.

9. Luigi Di Cosimo (2007-2008), Study of the pollutant dispersion in the atmosphere over the
urban agglomeration of Turin, Politecnico di Torino.

10. Luana Scaccianoce (2006-2007), Validation of a pollutant dispersion model with wind tunnel
experiments, Ecole Centrale de Lyon - Politecnico di Torino

11. Federico Boni (2006-2007), Application of an urban pollutant dispersion model to a district
in Turin, Politecnico di Torino.

12. Simone Biemmi (2006-2007), Analysis of the meteorological data collected in the urban
environment, Politecnico di Torino

13. Roberto Gaveglio (2006-2007), Application of an urban pollutant dispersion model to a
district in Milan, Politecnico di Torino.
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Chapter 4

Collaborations, Grants and
Contracts

National and International collaborations

– Partner of the DIPLOS (Dispersion of Localised Releases in a Street Network) project,
with researchers from University of Reading, University of Southampton and University of
Surrey. www.diplos.org

– University of Cambridge, Engineering Department (Prof. G.R. Hunt), Free and confined
buoyant flows.

– Imperial College London, Civil Engineering Department (M. van Reeuwijk and J. Craske),
Buoyant plumes dynamics.

– University of Salento (S. Di Sabatino and R. Buccolieri), Atmospheric dispersion in urban
areas.

– Istituto Zooprofilattico del Piemonte, Liguria e Valle d’Aosta (G. Ru), Dioxin transfer from
the environment to the food chain.

– IUSTI, Université Aix-Marseille (Prof. O. Vauquelin), Buoyant releases in tunnels.

– Environment and Cancer division at the Centre Léon Bérard (Prof. B. Férvers), Dioxins
atmospheric dispersion and breast cancer.

– Centre d’Étude des Tunnels (A. Mos), Internal and external aerodynamics of road tunnels.

– Centre Scientifique et Technique du Bâtiment (P. Carlotti and A. Voetzel), Large rooms
ventilation in case of fire.

National and International research grants

1. XENAIR Project (2015)

– Chronic low-dose exposure to Xenostrogen pollutants in ambient air and risk of breast
cancer in the french cohort E3N.

– Project led by B. Férvers, Centre Léon Bérard

– funded by Fondation ARC

– Responsible Ecole Centrale: P. Salizzoni.

– Amount Ecole Centrale: 60 000 euros.
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2. National research program ANR, AIRQ (2013)

– Turbulence modelling for pollutant dispersion in urban environment.

– Responsible: L. Soulhac and P. Salizzoni.

– Amount: 110 000 euros.

3. RESCUE Program (Reform of Education in Sustainability Climate in Urban Environ-
ments project) https://rescueproject.wordpress.com/. Collaboration with the University of
Salento.

Regional research grants (Last 5 years)

1. PhD scholarship funded by Région Auverge Rhône-Alpes 2016-2019. Responsibles: P. Sal-
izzoni, R.J. Perkins.

2. PhD scholarship funded by Région Rhône-Alpes 2010-2013 (PhD student: J. Le Clanche).
Responsibles: P. Salizzoni, R.J. Perkins.

3. PhD scholarship funded by Région Rhône-Alpes 2010-2013 (PhD student: N. Ben Salem).
Responsibles: P. Salizzoni, L. Soulhac., R.J. Perkins.

4. Post-Doc scholarship funded by Région Rhône-Alpes 2011-2012 (M. Marro). Responsibles:
L. Soulhac., P. Salizzoni.

Research Contracts (Last 5 years)

1. Centre d’ Études de Tunnels (2015).

– Ventilation of road tunnel portals.

– Responsible: P. Salizzoni.

– Amount: 40 000 euros

2. Centre Léon Bérard (2014)

– Environmental exposure to dioxins and risk of breast cancer. Using dispersion model
to estimate exposure scores (GEO3N project).

– Responsible: P. Salizzoni

– Amount: 10 000 euros

3. - Istituto Zooprofilattico del Piemonte, Liguria e Valle d’Aosta (2014)

– Atmospheric dispersion of dioxins and transfer to the food chain.

– Responsible: P. Salizzoni

– Amount: 30 000 euros.

4. Centre Scientifique et Technique du Bâtiment (2011/2014)

– Numerical simulations of buoyant plumes issuing from fires.

– Responsibles: P. Salizzoni and R.J. Perkins.

– Amount: 25 000 euros.

5. CEA-DAM (2013/2014)

– Development and validation of the SIRANERISK model for accidental risks assessment
in the built environment.

– Responsible : L. Soulhac and P. Salizzoni.

– Amount: 64 000 euros.

6. Total (2013)

– Atmospheric dispersion inverse modelling within an industrial site.
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– Responsibles: L. Soulhac and P. Salizzoni

– Amount: 11 000 euros.

7. EdF (2012/2014)

– Experimental study on flow and dispersion in the wake bluff bodies.

– Responsibles: L. Soulhac and P. Salizzoni

– Amount: 105 000 euros.

8. - Centre détudes de Tunnels CETU (2011).

– Aerodynamics of road tunnel portals.

– Responsible : Pietro Salizzoni.

– Amount: 30 000 euros

9. IRSN (2011)

– Plume rise and downwash in the wake of an obstacle.

– Responsibles: L. Soulhac and P. Salizzoni.

– Amount: 36 000 euros.
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Chapter 5

Publications

Reviewing for International Journals

Journal of Fluid Mechanics, Boundary Layer Meteorology, Experiments in Fluids, Journal of
Hazardous Materials, Environmental Modelling and Software, Building and Environment, Journal
of Applied Meteorology and Climatology, International Journal of Thermal Sciences, Atmospheric
Environment, Environmental Fluid Mechanics, Environment International, Applied Energy.

Books

1. Cancelli, C., Boffadossi, M., Salizzoni, P., Fluidodinamica ambientale - Turbolenza e disper-
sione. 2006, Otto Editore, 1-454, ISBN: 8887503966.

Articles in international peer-reviewed journals

1. Van Reeuwijk, M., Salizzoni, P., Hunt, G.R., Craske, J., Turbulent transport and entrainment
in jets and plumes: a DNS study, accepted for publication in Physical Review Fluids.

2. Soulhac, L., Lamaison, G., Cierco, F.X., Ben Salem, N., Salizzoni, P., Mejean, P., Armand, P.,
Patryl, L., SIRANERISK: modelling dispersion of steady and unsteady pollutant releases in the
urban canopy, Atmospheric Environment, 140, 242-260.

3. Marro, M., Nironi, C., Salizzoni, P. , Soulhac, L., Dispersion of a passive scalar fluctuating
plume in a turbulent boundary layer. Part II: analytical modelling. 2015, Boundary-Layer
Meteorology, 156, 447-469.

4. Nironi, C., Salizzoni, P. , Marro, M., Grosjean, N., Méjean, P., Soulhac, P., Dispersion of a
passive scalar fluctuating plume in a turbulent boundary layer. Part I: velocity and concentration
measurements. 2015, Boundary-Layer Meteorology, 156 , 415-446 .

5. Ben Salem, N., Garbero, V, Salizzoni, P., Lamaison, G., Soulhac, L., Modelling pollutant
dispersion in a street network. 2015, Boundary-Layer Meteorology, 155, 157187.

6. Buccolieri, R., Salizzoni, P. , Soulhac, L., Garbero, V., Di Sabatino, S., The breathability of
compact cities. 2015, Urban Climate, 13, 73-93.

7. Ezzamel, A., Salizzoni, P. , Hunt, G. R., Dynamical variability of axisymmetric buoyant plumes.
2015, Journal of Fluid Mechanics, 765, 576-611.
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8. Le Clanche, J., Salizzoni, P. , Creyssels, M., Mehaddi, R. Candelier, F., Vauquelin, O., Aerody-
namics of buoyant releases within a longitudinally ventilated tunnel. 2014, Experimental Thermal
and Fluid Science, 57, 121-127.

9. Marro, M., Salizzoni, P. , Cierco, F.X., Korsakissok, I., Danzi, E., Soulhac, L., Plume rise and
spread in buoyant releases from elevated sources in the lower atmosphere. 2014, Environmental
Fluid Mechanics, 14, 201-219.

10. Soulhac, L., Salizzoni, P. , Mejean, P., Perkins, R.J., Parametric laws to model urban pollutant
dispersion with a street network approach. 2013, Atmospheric Environment, 67, 229-241.

11. Carpentieri, M., Salizzoni, P. , Robins, A., Soulhac, L., Evaluation of a neighbourhood scale,
street network dispersion model through comparison with wind tunnel data. 2012, Environmental
Modelling and Software, 37, 110-124.

12. Salizzoni, P. , Marro, M., Grosjean., N., Soulhac, L., Perkins, R.J., Turbulent exchange be-
tween a street canyon and the overlying atmospheric boundary layer. 2011, Boundary-Layer
Meteorology, 141, 393-414.

13. Soulhac, L., Salizzoni, P. , Mejean, P., Didier, D., Rios, I., The model SIRANE for atmo-
spheric urban pollutant dispersion; PART II, validation of the model on a real case study. 2012,
Atmospheric Environment , 49 , 320-337.

14. Soulhac, L., Salizzoni, P. , Cierco, F.X., Perkins, R.J., The model SIRANE for atmospheric
urban pollutant dispersion. Part I: presentation of the model. 2011, Atmospheric Environment,
45, 7379-7395.

15. Soulhac, L. and Salizzoni, P.. Dispersion in a street canyon for a wind direction parallel to the
street axis. 2010, Journal of Wind Engineering and Industrial Aerodynamics, 98, 903-910.

16. Garbero., V., Salizzoni, P., Soulhac, L., Experimental Study of Pollutant Dispersion Within a
Network of Streets. 2010, Boundary-Layer Meteorology, 136, 457-487.

17. Salizzoni, P., Van Liefferinge, R., Soulhac, L., Mejean, P., Perkins, R.J., Scaling of the vertical
spreading of a plume of a passive tracer in a neutral urban boundary layer. 2010, Boundary-Layer
Meteorology, 135, 455-467.

18. Salizzoni, P., Van Liefferinge, R., Soulhac, L., Mejean, P., Perkins, R.J., Influence of wall
roughness on the dispersion of a passive scalar in a turbulent boundary layer. 2009, Atmospheric
Environment, 43, 734-748.

19. Soulhac, L., Garbero, V., Salizzoni, P., Mejean, P. , Perkins, R.J., Pollutant dispersion in street
intersections. 2009, Atmospheric Environment, 43, 2981-2996.

20. Salizzoni, P., Soulhac, L. , Mejean, P., Atmospheric turbulence and street canyon ventilation.
2009, Atmospheric Environment, 43, 32, 5056-5067.

21. Salizzoni, P., Soulhac, L., Mejean, P. , Perkins, R.J., Influence of a two-scale roughness on a
turbulent boundary layer. 2008, Boundary-Layer Meteorology, 127, 97-110.

22. Soulhac, L., Perkins, R.J. , Salizzoni, P., Flow in a street canyon for any external wind direction.
2008, Boundary Layer Meteorology, 126, 365-388.
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Submitted

1. Ben Salem, N., Salizzoni, P., Soulhac, L., Estimating accidental pollutant releases in the built
environment from turbulent concentration signals. Submitted to Atmospheric Environment.

2. Craske, J., Salizzoni, P., van Reeuwijk, M., The turbulent Prandtl number in a plumes is 5/3.
Submitted to Journal of Fluid Mechanics.

3. Salizzoni, P., Creyssels, M., Le Clanche, J., Mos, A., Mehhaddi, R., Vauquelin, O., Influence of
heat losses on the upwind flow of smoke in a longitudinally ventilated tunnel. Part I: experimental
results. Submitted to Fire Technology.

4. Mos, A., Salizzoni, P., Creyssels, M. Influence of heat losses on the upwind flow of smoke in a
longitudinally ventilated tunnel. Part II: numerical results. Submitted to Fire Technology.

International peer reviewed Journals ‘special issues’

1. Ben Salem, N., Soulhac, L., Salizzoni, P., Marro, M., Pollutant source identification in a city
district by means of a street network inverse model. 2014, International Journal of Environment
and Pollution, 55 (1-4), 50-57.

2. Ben Salem, N., Soulhac, L., Salizzoni, P., Armand, P., Inverting time dependent concentra-
tion signals to estimate pollutant emissions in case of accidental or deliberate release. 2014,
International Journal of Environment and Pollution, 55 (1-4), 86-93.

3. Marro, M., Nironi, C., Salizzoni, P., Soulhac, L., A Lagrangian stochastic model for estimating
the high order statistics of a fluctuating plume in the neutral boundary layer. 2014, International
Journal of Environment and Pollution, 54 (2-4), 233-241.

4. Di Sabatino, S., Buccolieri, R., Salizzoni, P., Recent advancements in numerical modelling of
flow and dispersion in urban areas: A short review. 2013, International Journal of Environment
and Pollution, 52 (3-4), 172-191.

5. Amicarelli, A., Salizzoni, P. , Leuzzi, G., Monti, P., Soulhac, L., Cierco, F.-X., Leboeuf, F.,
Sensitivity analysis of a concentration fluctuation model to dissipation rate estimates. 2012,
International Journal of Environment and Pollution, 48 (1-4), 164-173.

6. Garbero, V., Salizzoni, P., Soulhac, L., Méjean, P., Measurements and CFD simulations of flow
and dispersion in urban geometries. 2011, International Journal of Environment and Pollution,
44 (1-4), 288-297.

7. Cierco, F.-X., Soulhac, L., Salizzoni, P., Méjean, P., Lamaison, G., Armand, P., Modelling
concentration fluctuations for operational purposes. 2012, International Journal of Environment
and Pollution, 48 (1-4), 78-86.

8. Garbero, V., Salizzoni, P., Soulhac, L. , Méjean, P., Measurements and CFD simulations of flow
and dispersion in urban geometries. 2011, International Journal of Environment and Pollution,
44 (1-4), 288-297.
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Articles in national journals

1. Marro, M., Danzi, E., Cesano, M., Salizzoni, P., Atmospheric dispersion of light gases emitted
from punctual sources: Experiments and stochastic modeling. 2013, GEAM, 139 (2), 37-52.

2. Biemmi, S., Gaveglio, R., Salizzoni, P., Boffadossi, M., Casadei, S. , Bedogni, M., Analisi dei
dati meteorologici e parametrizzazione dello strato limite terrestre nell’area urbana milanese.
2008, Nimbus, 49-50, 6-16.

3. Boni, F., Salizzoni, P., Garbero, V., Genon, G., Soulhac, L., La modellizzazione
dell’inquinamento atmosferico in aree urbane su scala locale: un esempio di applicazione in
un quartiere di Torino. 2008, GEAM, 124, XLV (2), 63-76.

4. Salizzoni, P., Garbero, V., La dispersione di inquinanti in ambiente urbano. 2006, GEAM, 117,
XLII (1-2), 77-84.

5. Garbero, V. , Salizzoni, P., La dispersione di inquinanti in atmosfera in una valle alpina. 2006,
Nimbus, 41-42, 6-13.

International Conferences

1. Jiang, L., Creyssels, M., Salizzoni, P., The control of releases of buoyant fluid in a ventilated
tunnel, 11th European Fluid Mechanics Conference EFCM11, September 2016, Sevilla, Spain.

2. Vaux, S., Salizzoni, P., Creyssels, M., Craske, J., van Reeuwijk, M., Turbulent transfer and en-
trainment in non-Boussinesq jets, 11th European Fluid Mechanics Conference EFCM11, Septem-
ber 2016, Sevilla, Spain.

3. Craske, J., Salizzoni, P., van Reeuwijk, M., The relation between the entrainment coefficient and
the turbulent Prandtl number in Lazy, Pure and Forced plumes, 11th European Fluid Mechanics
Conference EFCM11, September 2016, Sevilla, Spain.

4. Fervers B., Coudon, T., Faure, E., Danjou, A., Salizzoni, P., Development of a GIS based
exposure metric to assess environmental dioxin exposure and comparison with an urban Gaussian
model, 28th Annual Conference International Society for Environmental Epidemiology ISEE2016,
September 2016, Rome, Italy.

5. Salizzoni, P., Marro, M., Natangelo, U., Desiato, R., Baioni, E., Bottazzi, I., Possamai, S. Ru,
G., Development of an operational model for risk assessment in case of environmental and food
chain contamination from dioxins, 28th Annual Conference International Society for Environ-
mental Epidemiology ISEE2016, September 2016, Rome, Italy.

6. Coudon, T. Salizzoni, P., Nguyen, C.-V., Dalleau, N., Férvers, B., Reconstructing past and
present dioxins atmospheric pollution scenarios in the city of Lyon, Transport and Air pollution
2016, 24-26 Mai 2016, Lyon, France.

7. Coudon, T. Salizzoni, P., Nguyen, C.-V., Dalleau, N., Férvers, B., Determination of a geo-
graphic information system based indicator to assess environmental dioxins exposure in Lyon
through comparisons with an atmospheric dispersion model results, IARC 50th Anniversary
Conference, 7-9 June 2016, Lyon, France.

8. Gamel, H., Salizzoni, P., Marro, M., Méjean, P., Carissimo, B., Soulhac, L., Dispersion of a
passive scalar in the wake of a two-dimensional obstacle: velocity and concentration measure-
ments. 2015, International Workshop on Physical Modelling of Flow and Dispersion Phenomena,
7-9 September 2015, ETH, Zurich, Switzerland.
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9. Lamalle, D., Carlotti, P., Salizzoni, P., Perkins, R.J., Sensitivity analysis of simulation param-
eters for fire risk assessement. 2015, International Fire Safety Symposium 2015, Coimbra, 20-22
April, 2015,Portugal.

10. Gamel, H., Salizzoni, P., Soulhac, L., Méjean, P., Marro, M. Grosjean, N., Carissimo, B.,
Turbulent kinetic energy budget and dissipation in the wake of 2D obstacle: Analysis of the k-ε
closure model. 2014, American Society of Mechanical Engineers, Fluids Engineering Division
(Publication) FEDSM, Chicago.

11. Gamel, H., Salizzoni, P., Carissimo, B., Soulhac, L., Méjean, P., Grosjean, N. Experimental
evaluation of the dissipation rate of turbulent kinetic energy, in the wake of an obstacle. Appli-
cation to the validation of k-ε or Rij-ε turbulence models. 2014, ICWE14, 14th International
Conference on Wind Engineering, Hamburg, Germany.

12. Danjou, A., Dossus, L., Faure, E., Anzivino-Viricel, L., Dalleau, N., Salizzoni, P., Clavel-
Chapelon, F., Fervers, B., Environmental Exposure to Dioxins and Risk of Breast Cancer: the
GEO3N Pilot Study in the Rhône-Alpes Region, France. 2014, 26th Annual International Society
for Environmental Epidemiology Conference, Seattle, Washington, USA - August 24-28, 2014.
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40. Salizzoni, P., Soulhac L., Méjean P., Perkins R. J., A comparison of measurements and CFD

simulations for pollutant dispersion in urban geometries. 2007, 11th International Conference on
Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Cambridge,
UK.
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Chapter 6

Introduction

6.1 Air pollution, an ever-present problem

Air pollution represents a persistent problem in human history. Even in ancient times, in the absence
of urban areas with a large conglomeration of people, air pollution was a problem, though restricted
to the contamination of interiors (Brimblecombe, 1987). Smoke from fires within huts would have
filled the whole interior before finding its way out through a hole in the roof, that had to be not too
big, in order not to let in the rain. The appearance of cities gave rise to new air pollution problems.
Ancient cities needed to be small, to ease problems of defense and the carriage of goods, and inevitably
they suffered from overcrowding. Under such circumstances, smoke from small forges or hearths must
frequently have been emitted at low level and allowed to drift onto neighboring houses. Streets between
these densely packed dwellings would have formed canyons, likely to trap smoke and fumes. With the
first industrial revolution new relevant problems arose, induced by the combustion of coal, in both
domestic heating and industry. Since then, air pollution problems have been further amplified by
the large consumption of fossil fuels and by the production of new chemical substances in industrial
processes (and their emission into the atmosphere). These days, typical examples of indoor and outdoor
air pollution include (see fig. 6.1) persistent spatially distributed emissions in urban and sub-urban
areas (due to traffic, domestic heating, industry...) as well as accidental releases of toxic or inflammable
pollutant in industrial sites, urban areas or within enclosed spaces, such as road and train tunnels,
underground escalators, theatres and large halls.

In the second half of the 20th century, the increasing welfare of the population in developed countries
induced an increasing concern and sensitivity of citizens to the exposure to environmental risks. This
led to the adoption of regulations for the mitigation of air pollution and its related risks and to two
main relevant results (McNeill, 2001). The first was the elimination of lead in fuels, which resulted
in a drastic reduction in emissions from cars since the beginning of the 1980s. The second was the
elimination of CFCs in cooling circuits, which stopped the depletion of stratospheric ozone.

Despite these environmental successes, in the last decades, hazards and risks related to air pollution
continue to draw attention within social, economic and political issues. This can be attributed to four
main aspects:

� the enhanced urbanization worldwide and the higher population density surrounding industrial
sites. This proximity represents a major concern not only for the population but also for public
authorities and industrial operators, whose business and activities may be adversely affected by
strict regulations.

� the increased use of underground infrastructure for transport (tunnels, escalators) and large
enclosed spaces for public events (concerts, sports), where the occurrence of accidental releases
of harmful airborne substances expose users of these infrastructures to relevant hazards.
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a) 

b) 

c) 

Figure 6.1: Examples of air pollution: a) toxic cloud accidentally released by an industrial plant in
Spain, b) urban smog in a large Indian city c) sketch of the smoke propagation in the King’s Cross
underground station fire, London (Hunt, 1991).

� the occurrence of major technological accidents (e.g. Seveso, Chernobyl, Bhopal, Fukushima,
Mont Blanc Tunnel, King’s Cross fire. . . ), inducing a general public suspicion about the ability
of public authorities and industrial groups to manage and mitigate technological risks.

� the increasing scientific evidence of the effects on human health due to exposure to indoor and
outdoor air pollution (Loomis et al., 2013).

In recent years, further attention on these problems has also been induced by the increased proba-
bility of the occurrence of terrorist acts in industrial sites and in (indoor and outdoor) crowded public
spaces.

Following a well-established classification, hazards and risks related to air pollution are referred to
as accidental or chronic. The former are related to the exposure to high concentration levels in intense
and limited (in space and time) pollution episodes induced by unexpected and uncontrolled releases
of pollutants (e.g. Seveso). The latter are instead related to the exposure to moderate concentration
levels in persistent and distributed (in space and time) air pollution scenarios, induced by identified
and (partially) controlled sources (urban pollution). In both cases, the impact of pollutants on human
health and the environment is related to the concentrations in air of harmful substances (and to the
exposure time to these concentrations), which are in turn determined by the mechanisms governing
the transport of pollutant in the ambient air. Determining impacts due to air pollution in a given
area therefore requires modelling tools to predict the space and time variation of pollutant distribution
(for given emissions scenarios). These estimates can be further used by epidemiologists, veterinarians,
demographers and economists to quantify the consequences of these hazards to assess risks associated
with pollution scenarios.

In almost all cases of practical interest, the flow which transports and disperses pollutants is
highly turbulent, usually with characteristics determined by complex and highly specific boundary
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conditions. So, in order to model such flows for operational purposes (that is, without requiring
exceptional computing resources or highly detailed data) we need to understand how, and to what
extent, turbulent flows are driven by initial boundary conditions and how these flows transport and
disperse pollutants.

My research has been devoted to improving our understanding of some of the fundamental processes
governing turbulent dispersion and in incorporating that understanding into operational models.

6.2 Modelling pollutant transport in turbulent flows

As is well known, the transfer of mass, momentum and energy within a turbulent fluid is a chaotic
process, and cannot therefore be treated with a deterministic approach. The pollutant concentration
ct(x, t), as well as the fluid velocity ut(x, t) (and any other variable determining the dynamical state
of the flow), has therefore to be considered as a random variable, and is usually presented as given by
the sum of its mean C and its fluctuating value c, i.e. ct = C + c. The fluctuations are characterised
by a wide variety of spatial and temporal scales (see fig. 6.2). Studying the turbulent transport of a
pollutant in environmental flows therefore leads to a study of the modification of the probability density
function (or at least of its lower order moment) of its concentration and its spatial (and temporal)
evolution, and its link with the statistics of the velocity field, in a large variety of flow configurations.

The modification of the concentration probability density functions depends upon a process, re-
ferred to as turbulent dispersion, which is the result of the complex motion of blobs of polluted fluid
(also referred to as puffs) and their mixing with the ambient fluid. The mixing is, strictly speaking, a
phenomenon that takes place at the molecular scale, and is therefore due to local concentration gradi-
ents. The intensity of these gradients within a turbulent flow is however governed by the multi-scale
dynamics of the flow.

To discuss the multi-scale character of the dispersion process we consider (see fig. 6.2a) a release of a
passive scalar within an isotropic turbulent flow, in the presence of a mean advective component (from
left to right in the picture). The wide variety of scales characterising the turbulent flow represented
in fig. 6.2a, can be conveniently enlightened by a spectral representation of a velocity signal (6.2b),
registered by an anemometer placed within the flow, in the wave number space (see fig. 6.2c). The
velocity spectrum typically extends over a wide variety of wave numbers, referred to here as k, between
an upper and a lower bound. The former, referred to here as L and named Eulerian macro-scale,
represents the size of the largest eddies within the flow. The latter, referred to here as η and named
Kolmogorov micro-scale, represents the smallest scale at which velocity gradients take place, and at
which the kinetic energy of the turbulent motion is dissipated, i.e. transferred to the microscopic
molecular motion.

In principle, a similar procedure can be adopted to identify the corresponding timescales involved in
the flow dynamics1. Notably, this would allow computing the so-called Lagrangian timescale, referred
to here as TL, which is the typical time over which the eddies’ motion remain correlated, i.e. a time
interval over which the flow retains a sort of memory of its evolution.

A puff of pollutant of generic size l (noted in red in fig. 6.2) would then be submitted to the action
of eddies that can be larger and smaller that its size, and that will be efficient in very different ways in
transporting it across the flow and in mixing it with the ambient air. Its transfer from the source to a
receptor point would be considered to occur over short or large times, depending on the ratio between
a typical ‘flight’ time and the characteristic scale TL. In a general way, this phenomenon is governed
by different processes and mechanisms, depending on the scales at which it is observed and studied.

The modelling of the pollutant dispersion implies predicting the effects of these multi-scale dynamics
and their role in the transfer of a pollutant. This modelling relies on different approaches, depending
on the choice of the scales of observation. These in turn will depend on the particular phenomenon we

1In practice this turns out to be very complicated since it requires measuring a large Lagrangian number of velocity
signals, i.e. obtained by following single fluid particles in their motion, and computing their spectral distribution in the
frequency space.
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Figure 6.2: a) Passive scalar plume dispersed in a homogeneous and isotropic turbulent flow (Duplat
and Villermaux, 2008). Example of turbulent velocity signal registered at a fixed position and of its
related spectrum in wavenumber (k) space; L is the Eulerian macroscale, η the dissipative Kolmogorov
scale, and l indicates a generic size of a pollutant puff transported within this turbulent flow.

aim to focus on. As further discussed in the next paragraphs, studies on chronic hazards will be based
on a quite rough description of the flow and concentration statistics, which will be essentially focusing
on the first order moment of the Probability Density Function (PDF). Conversely, accidental hazards
require a much finer characterisation of higher order moments of the PDF, as information is required
on the intensity and the intermittency of the concentration fluctuations.

6.3 Dispersion and mixing

We consider (see fig. 6.3) the behaviour of an ensemble of trajectories of marked fluid particles issuing
from a point source S within a turbulent fluid. Due to the fluctuating component of the velocity field,
fluid particles follow irregular paths drawing trajectories that can be very different one from the other.
In this rather disordered picture, adopting as a reference an imaginary averaged trajectory (dotted
black line in fig. 6.3), we can observe that the standard deviation of the distances between the position
of a fluid particle and the average trajectory increases moving away downstream of S (this does not
preclude a single fluid particle to move very close to it and even cross it several times). The ensemble
of trajectories therefore spreads indefinitely, involving larger and larger volumes of ambient fluid, until
its motion is eventually restrained by physical limits imposed at the boundary of the domain.

To this trajectory dispersion is related a sort of statistical dilution of pollutants. To enlighten this,
we can simply consider that the trajectories represent the motion of the centre of mass of pollutant
volumes, of size lo, emitted from S with an initial concentration co. Due to the dispersion of the
trajectories, the centres of mass of these volumes are distributed over a larger spatial extent (see fig.
6.3). The time-averaged concentration value, measured at a given receptor, would then be highly
influenced by this process. A measurement obtained at a receptor placed very close to the source at
P1, at a distance of order l0, would provide a signal similar to that sketched in fig. 6.3, giving a mean
value over a time interval T (which we assumed to be sufficiently large):
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Figure 6.3: a) Dispersion of polluted air volumes of size lo emitted from a localised source S (Cancelli
et al., 2006); dotted black line represents the averaged trajectory. The receptor P1 is located in the
very nearfield of the source, at a distance of order l0. Time-dependent concentration ct measurements
in b) P1 and c) P2; the receptor P2 i located further away, at a distance of several tens of source size
l0.

C(P1) =
1

T

∫ T

0

ct(t
′
)dt

′ ∼ co,

slightly smaller than the initial value c0.
At the receptor P2 we would instead observe a different kind of signal (see fig. 6.3), characterised

by larger fluctuations and intermittency, with a mean value C(P2) significantly smaller than co. This
is due to the fact that the time interval during which the measurement probe is within a volume of
polluted fluid represents a reduced fraction of the whole measurement time. The intermittency of the
signal therefore results in a decrease in the value of the mean concentration C(x) taken at a fixed
position. The decrease in the time-averaged concentration is therefore not due to a modification of
the pollutant concentration within each of these pollutant puffs, but instead is due to the dispersion
of their centres of mass. In this sense, we can assert that this sort of statistical dilution does not
necessarily imply the mixing of these volumes of polluted fluid with the surrounding ambient fluid.

The mixing is actually related to another process characterising the mass transfer within a turbulent
flow. During this random motion, volumes of fluid with dynamical (and eventually thermodynamical)
conditions, initially very different, can be found close one to the other in some part of the domain.
Their contact implies the occurrence of strong inhomogeneities of the fluid properties and therefore
large gradients (which in turn produce large fluxes) of any variable characterising the flow (momentum,
density, pollutant concentration...). To visualise this process, we can follow a single blob of marked
fluid (see fig. 6.4), of size lo, characterised by a concentration of a chemical species different from
that of the ambient fluid. As far as the velocity fluctuations of the turbulent flow are characterised
by spectral components with wavelengths that are smaller than lo, i.e. if within the blob of fluid take
place significant velocity differences, the form of the blob of fluid is progressively distorted over a length
scale that become progressively smaller (see fig. 6.4). This process implies another kind of ‘dispersion’,
that of the fluid particles (composing the puff) around their centre of mass. This is usually referred to
as relative dispersion, and has two main implications:

� the exchange surface between the blob and the ambient fluid increases significantly;
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Figure 6.4: Evolution of a marked blob of fluid released within a turbulent flow (Cancelli et al., 2006).

� single fluid particles from the centre of the blob are brought towards its borders (and viceversa).

Both features lead to the same relevant effect, that of an intensification of the gradients within the
fluid, which in turn results in an acceleration of diffusive phenomena responsible for the homogenisation
process between the fluid within and outside the blob of fluid, i.e. on its mixing with the ambient fluid,
a phenomenon that is ultimately due to a single process: the molecular (or brownian) diffusion 2.

The variation of concentrations statistics measured at a fixed point downwind of a pollutant source
can therefore be due to two kinds of processes: i) the irregular motion of the centre of mass of the
polluted fluid volumes, and ii) the intensification of diffusive processes. It is worth noting that these
two have to be considered as two distinct phenomena, whose correlation one to the other can be of
variable strength depending on the flow configuration.

To evidence the distinction between these two processes and their roles in the turbulent dispersion
we have sketched in fig. 6.5 two possible evolutions of a pollutant plume. These are produced by
the steady emission of pollutant within the atmospheric boundary layers with two different dynamical
states, which imply a different spectral distribution of the velocity fluctuations. In the first case the
plume is captured by energetic large-scale vortices (larger than the plume lateral dimensions). Its
morphology results then in large spatial fluctuations, often referred to as meandering3. In the second
case, the velocity field is instead dominated by smaller-scale fluctuations, i.e. whose length scale is of
the same order as the initial plume size lo. The plume is then immediately deformed by the velocity
differences taking place within it, giving rise to a concentration field with smoothed spatial variations.

The two plume configurations give rise to very different concentration signals measured at the
same position, which we refer toin the two cases as P1 and P2, respectively (see fig. 6.5). In P1, values
of concentrations ct are characterised by the appearance of sudden peaks, measured when the probe
intercepts polluted fluid volumes, separated by intervals of almost zero concentration; in P2, the signal
is instead much more regular, with fluctuations of reduced intensity around its mean value C. Even
though the two signals are radically different, in some very particular cases, the first order moment
C of the concentration probability density function may be very similar. The higher order moments
would be however very different in the two cases. Notably, the signal registered in P2 is expected to
have large values of the higher concentration moments (variance, skewness, kurtosis...), since these
quantify the amplitude of the fluctuations around the mean.

The role of the two previously mentioned processes, i.e. the spread of the puffs’ centre of mass and

2This can be clearly highlighted by writing the balance equation of a generic fluid property, in this case the concetration
of a chemical species ct, in the form (assuming for simplicity a zero divergence velocity field):

Dct

Dt
= − ∂fj

∂xj
,

where the l.h.s. denotes the Lagrangian derivative of ct and the r.h.s. the divergence of the diffusive fluxes fj (i.e. reduced
by the random molecular motion). The high negative values of the Lagrangian derivatives observed in a turbulent flow
are then strictly linked to the divergence of diffusive fluxes, whose intensity is amplified by the dynamics of the turbulent
flows, and its capacity in intensifying gradients.

3This large-scale motion can be typically due to convective instabilities taking place in the atmospheric boundary
layer on hot sunny days.
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Figure 6.5: Instantaneous configurations of a pollutant plume and relative concentration signal regis-
tered at a fixed receptor placed downwind the source in two different typologies of atmospheric con-
ditions characterised by: – a) large scale velocity fluctuations – b) smaller scale velocity fluctuations
(Cancelli et al., 2006).

their mixing with ambient fluid, can be very different in the overall dispersion process depending on
the typology of flow configuration. The relative importance of these processes, and their correlation
one to the other, depends on a large number, namely the distance from the source of our observation
point, the conditions imposed at the source (sect. 6.5), and the influence of physical boundaries on
the dispersion process, i.e. the geometry of the domain (sect. 6.6).

6.4 Pollutant dispersion, chronic and accidental hazards

The impact of pollutant releases on the health and the environment (and their related risks) can be
effectively determined based on estimates of the PDF of the pollutant concentration to whom humans
and other biological systems are exposed. Nevertheless, the level of accuracy of the description of this
PDF needed to evaluate these impacts depends on the typology of hazards that have to be assessed.

In several problems, it is sufficient to estimate a long period time-averaged concentration

C = lim
T→∞

[
1

T

∫ T

0

ct(t
′
)dt

′
]
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This is typically the case for persistent hazards and risks associated with long-term exposure to pollu-
tant concentrations, as is the case for example for diseases induced by nitrogen oxides or particulate
matter in air. Mean concentration values are also of primary interest when evaluating pollutant soil
deposition and its transfer to the food chain. In all these cases what matters is the cumulative effect
over time, since the accumulation process filters the effect of concentration fluctuations.

Conversely, when dealing with the release of highly toxic, flammable or explosive gases, the estimate
of the sole time-averaged concentration C is not sufficient. It may be useful only in a very few specific
cases in which the intensity of concentration fluctuation is low compared to that of the mean values,
as in case (b) depicted in fig. 6.5. In all other cases it is essential to estimate the statistics of the
concentration fluctuations around their mean value. The inflammability or the explosion of a gas cloud
depends on the local instantaneous values of concentrations, and actually occurs when these exceed a
given threshold of concentrations. The impact of odours depends on peak concentrations to which the
human nose is sensitive. The exposure to hazardous airborne materials, and their dosages, depends on
peak-to-mean ratios.

In a general way, we can therefore assert that the assessment of chronic hazards, due to continuous
and eventually controlled sources of pollutants, requires estimates of long-term averaged concentration
values. The assessment of accidental hazards, due to the uncontrolled releases of harmful toxic or
explosive airborne pollutant, requires instead a large amount of information about the concentration
PDF. The values of the concentration standard deviation and of its skewness are therefore essential in
order to evaluate the probability of exceeding given concentration thresholds.

6.5 On the effect of the source conditions

The dispersion process can be highly influenced by the condition of the release at its emission, at
least over a region extending over a limited distance from the source. Generally speaking, for given
dynamical conditions of the ambient fluid, the effects of the source conditions are related to its size
and to the dynamical and thermodynamical state (notably in terms of fluxes of momentum, mass, heat
or buoyancy) of the polluted fluid released in the ambient fluid.

The influence of source size l0 of a source of pollutant within a turbulent flow depends notably on
the typical length scales L associated with the largest eddies of the turbulent ambient fluid. The ratio
l0/L is expected to have a direct influence on both the dispersion of the puffs’ centres of mass, which
would be more effective when large eddies transport small puffs, and its mixing with the ambient fluid,
which is more effective when small eddies deform the puffs’ internal structure.

The role of l0/L on the concentration PDF of a pollutant dispersed in an atmospheric flow is a
feature that still has to be fully elucidated. The experimental investigation of this phenomenon, as
well as its mathematical modelling, constitutes a relevant part of the research activities presented in
the next chapters, namely in 7.1, 7.2 and 7.3.

Other important effects are related to the dynamical and thermodynamical state of the polluted
fluid at its emission. In an accidental release from a pipe, as well as in the case of a release from a
stack, there is usually a region within which the dynamics of the fluid is almost fully determined by
kinetic energy at the release point, or by the difference of thermodynamical state (temperature, density)
between the pollutant release and the ambient fluid. In most cases the fluid release is already turbulent
at its emission point. When this is not the case however, the release becomes rapidly turbulent, over
a distance of few diameters from the emission point, due to the large instabilities generated by the
velocity and temperature gradients taking place within the flow. These releases are commonly referred
to as jets, when their dynamics are governed by the momentum flux imposed at the source, or plumes,
when instead they are determined by a flux of heat (or buoyancy).

The turbulent dynamics of jets and plumes can then be effectively fully determined by the fluxes
at the emission point and the role of an eventual turbulence within the ambient flow may become of
secondary importance (see fig. 6.6(a)). The larger-scale fluctuations of these turbulent flows are then
imposed by the typical length scales imposed at the source, i.e. the source diameter. Moving away from
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a) 

b) 

Figure 6.6: Releases of polluted fluid characterised by high momentum and/or buoyancy fluxes (Can-
celli et al., 2006): (a) release dominated by local generated turbulence, i.e. in an almost still environ-
ment; (b) releases in a turbulent cross-flow.

the emission point smaller-scale fluctuations are then progressively generated by the occurrence of an
energy cascade that transfers kinetic energy down to the dissipative molecular scale. The extent of the
cascade depends on the initial energy flux imposed at the source and can be significantly influenced by
the effects of buoyancy in the case of releases of fluid which are lighter (or denser) than the ambient
air.

The process is characterised by the presence of velocity fluctuations which are of the same order,
or smaller, than the jet size and are therefore able to enhance its dilution and mixing with the ambient
fluid, which is progressively brought within the release by the engulfment of a volume of ambient fluid
within the releases, a process known as entrainment. Despite the large amount of literature available on
jets and plumes, the dynamics of the entrainment process, and its link with the momentum and energy
transfers and mixing, still represents an open field of research in fluid mechanics. These problems are
addressed herein in chapters 8.1 and 8.2 by means of experimental and numerical methods.

As the released fluid moves away from the source, it mixes with the ambient fluid, which is progres-
sively entrained within the plume. The component of fluid motion due to the initial source condition
progressively vanishes and becomes of the same order as that of the ambient turbulence. In this phase
we can observe the appearance of a bent-over plume (see fig. 6.6b), whose spreading is gradually
controlled by the atmospheric dynamics.
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Figure 6.7: Effect of the confinement and ventilation on a buoyant plume: (a) freely propagating
plume; b) plume in a vertically confined environment; c) plume in vertically confined and ventilated
space; d) plume within an enclosed and ventilated space, confined vertically and laterally.

6.6 On the effect of the domain geometry

The presence of solid walls bounding the turbulent flow can affect its dynamics in very different ways,
giving rise to very complex flow configurations. Among the large variety of configurations of pollutant
releases within wall-bounded flows we focus here on three particular cases:

� the release of a passive scalar in a turbulent boundary layer over a rough surface;

� the release of a buoyant pollutant within a ventilated tunnel, i.e. an enclosed space bounded
both laterally and vertically;

� the release of a passive scalar within a group of obstacles.

Compared to the case presented in fig. 6.2, that of homogeneous and isotropic turbulent flow in
an unbounded domain, the presence of a solid wall (as in the cases represented in fig. 6.5) introduces
a major modification to the flow dynamics; it restraints the motion in the direction perpendicular
to the wall, therefore imposing a strong anisotropy and inhomogeneity of the velocity field. The
effects of the anisotropy and inhomogeneity on dispersion and mixing represent a main difficulty in
their mathematical modelling. These aspects constitute a relevant feature of the studies presented in
sections 7.1, 7.2 and 7.3, where we analyse the case of a fluctuating passive scalar plume released in
the lower atmosphere.
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Concerning the case of a buoyant pollutant, it is instructive to consider the case of a light gas
issuing from a localised source such as a fire. Differently from the case of a freely propagating plume,
sketched in fig. 6.7a, the presence of a solid wall induces the buoyant pollutants to impinge on it and
to spread along the ceiling, forming a stably stratified layer of light fluid (fig. 6.7b). In the presence of
a mean longitudinal flow, the release will produce a bent-over plume (fig. 6.7c). For a given intensity
of the longitudinal ventilation all smoke will be pushed downwind of the source. In the case of lighter
ventilation the buoyant smoke can form a back-layer flow, moving forward against the ventilation
under the action of a pressure difference. In all cases, the combined effect of the ventilation and lateral
and vertical walls can give rise to secondary vortices (whose axes are parallel to the direction of the
flow), which can induce a motion of the pollutant from the upper part of the ceiling to the ground.
The dynamics of the back-layer flow and its control by means of the longitudinal ventilation within a
tunnel represent a classic problem in industrial and transportation safety issues. This involves notably
a study of the effects of large density differences within the flow, i.e. between the buoyant pollutant
and the ambient flow, usually referred to as non-Boussinesq effects, that are still not elucidated. These
features are addressed in section 8.1.

Finally, we consider the case of a passive scalar release within a group of obstacles, as within the
buildings of an urban district represented in fig. 6.8, and usually referred to as an urban canopy. The
presence of obstacles is a further element of complexity in the dynamics of a turbulent flow. The scales
of motion are highly restrained by the distance between the buildings and also their height. The flow
streamlines are also deeply influenced by building geometry.

When the buildings are densely packed, the flow within the canopy is somehow decoupled from that
in the overlying atmospheric boundary layer. The turbulence intensity levels are generally lower than
those in the overlying flow and the flow streamlines are observed to give rise to organised structures.
A helicoidal motion (see fig. 6.8a) occurs within the streets, given by the superposition of a mean
advection along their axes and a recirculation around it. A vortex with vertical axes instead takes
place close to the street intersection, where fluxes from different streets converge.

When the buildings are more distant one from the other, this streamline topology vanishes and the
flow becomes more disordered, given by the non-linear interaction of the flow of the single buildings,
which also significantly enhances the level of velocity fluctuations.
These different flow pictures have very different effects on the overall dispersion of a pollutant plume.
Within dense canopies pollutant transfer is characterised by a strong channelling along the street axes
(see fig. 6.8b), the retention within the recirculating motion within the streets (street-canyon effect),
and the intense turbulent exchanges at street intersections. In sparse canopies, the pollutant plume
will be highly affected by the intense turbulent fluctuations produced in the buildings’ wake, that will
enhance its mixing with the ambient air. These aspects are discussed in chapters 9.1 and 9.2, where
we address the (direct and inverse) modelling of pollutant dispersion in a built environment such as a
city or an industrial site.

6.7 Outline

In the following chapters I present the main elements of the research I have been involved in since
joining the Laboratoire de Mécanique des Fluides et Acoustique of the Ecole Centrale de Lyon as a
permanent staff member in 2009. Although they show the same underlying theme of the influence of
the structure of turbulence on the dispersion of pollutants, I have grouped my work into three main
topics:

1. the concentration fluctuations of a passive scalar emitted and dispersed in a neutral turbulent
boundary layer (Chapter 7);

2. the dynamics of buoyant releases in free and confined environments (Chapter 8); and
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a) b) 

Figure 6.8: Effect of the built environment on flow and dispersion: (a) streamline topology within a
street (Soulhac et al., 2008); (b) passive scalar plumes released within the urban canopy.

3. the direct and inverse modelling of pollutant dispersion within the built environment, i.e. urban
areas and industrial sites (Chapter 9).

In the three cases we deal with problems which are typical in the assessment of accidental hazards,
induced by the transport of a sudden and uncontrolled release of pollutant within indoor and outdoor
air. In the first two themes the focus is on the role of the source conditions. In the third case we
deal instead with the influence of an enhanced complexity of the flow field to the geometry within
which the dispersion process takes place. Research has been undertaken making use of a large variety
of methodologies. These include numerical, analytical and stochastic modelling approaches as well as
experimental methods adopting different measurement techniques, such as flow visualisations, hot-wire
and laser-Doppler anemometry, particle image velocimetry and the use of a flame ionisation detector
to measure concentrations.

The results of this research have been published in almost thirty articles in international referred
journals, and I have therefore selected only a few articles to illustrate each topic; some of these articles
have already been published, others have been recently submitted, and other are still in prepara-
tion. Each chapter begins with a short description of the work described in the selected articles and
summarises the major findings.
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Chapter 7

Dispersion of a passive scalar
fluctuating plume in a turbulent
boundary layer

As widely discussed in section 6.7, the assessment of an accidental hazard due to the release of a harmful
airborne pollutant into a turbulent flow requires modelling of the spatial (and eventually temporal)
evolution of the pollutant concentration PDF. To this end, the key aspect is to evaluate the influence
of the ratio between source size l0 and the Eulerian macroscale L on the concentration PDF. The ratio
l0/L plays an important role in determining (see fig. 7.1a), in the near-field region, the intensity of
the meandering motion of the plume puffs as well as their dispersion around their centre of mass (see
sect. 6.3 and sect 6.5).

Meandering is expected to be dominant close to the source where ‘small’ pollutant puffs can be
trapped by the motion of the large-scale vortices. Relative dispersion becomes dominant far from the
source, when the puff size exceeds that of the largest eddies. The role of these two phenomena can
be highlighted well by examining concentration signals registered on the axis of the time averaged
plume (7.1b). Close to the source, concentration signals are characterised by sharp peaks and high
intermittency (see fig. 7.1c), giving rise to strongly positively skewed PDF (fig. 7.1e). Far from the
source, intermittency is suppressed and concentration fluctuations are damped (fig. 7.1d), and the
PDF progressively relaxes toward a Gaussian (fig. 7.1e).

To date, these features have been addressed by several studies (see, for example, Sawford and
Stapountzis (1986) and Sawford (2004)) that however essentially focused on the case of a homogeneous
turbulent flow. The aim of the studies presented in the next section is therefore to analyse the case of
a non-homogeneous anisotropic turbulent flow, namely a boundary layer over a rough wall. From an
experimental point of view (sect. 7.1), the objective was to extend the work of Fackrell and Robins
(1982) and Fackrell and Robins (1982) in order to provide measurements of:

� the 3rd and 4th order moments of concentration statistics; and

� the vertical evolution of the Eulerian macroscales Luu, Lvv and Lww characterising the size of
largest eddies in the three direction.

Our results show that the source size and elevation have a major influence on the spatial distribution
of the higher moments of the concentration PDF. This can be explained by an interaction of the plume
during its initial stage of growth with the different scales of motion in the surrounding atmospheric
flow. These effects are more and more evident as the moments of the PDF increase, and persist over a
distance that is almost three orders of magnitude larger than the source size. Notably, the experimental
non-dimensional PDF is shown to be very well modelled by a Gamma distribution for any of the source
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b) 

Figure 7.1: a) Visualisation of a fluctuating scalar plume within a turbulent flow. Typical concentration
signals registered b) close and c) far from the source, with the d) corresponding concentrations PDF.

congurations considered, irrespective of the conditions imposed therein. This implies that the higher
order concentration moments can be fully expressed as a function of only one parameter, namely the
intensity of the concentration fluctuations (i.e. the ratio between the standard deviation and mean
concentration value).

These measurements have been subsequently used to analyse the reliability and the consistency of
two different modelling approaches widely adopted in the literature (Gifford, 1959; Yee et al., 1994;
Sawford, 2004): an analytical meandering plume model (sect. 7.2) and a stochastic micro-mixing
model (sect. 7.3). Results of both modelling approaches show significant sensitivities to the conditions
imposed at the source and to the setting of some key flow parameters. These features, together with
other shortcomings related to the model structure, make these modelling approaches not fully reliable
for the estimate of higher-order moments of concentrations.

However, in the light of the new experimental results showing that the concentration PDF is suitably
modelled by a Gamma distribution, the prediction of both modelling approaches can be corrected by
making use of empirically-based corrections, which provide estimates on higher-order moments based
on the computation of the first two moments only.
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Abstract The prediction of the probability density function (PDF) of a pollutant concentra-
tion within atmospheric flows is of primary importance in estimating the hazard related to
accidental releases of toxic or flammable substances and their effects on human health. This
needmotivates studies devoted to the characterization of concentration statistics of pollutants
dispersion in the lower atmosphere, and their dependence on the parameters controlling their
emissions. As is known from previous experimental results, concentration fluctuations are
significantly influenced by the diameter of the source and its elevation. In this study, we aim
to further investigate the dependence of the dispersion process on the source configuration,
including source size, elevation and emission velocity. To that end we study experimentally
the influence of these parameters on the statistics of the concentration of a passive scalar,
measured at several distances downwind of the source. We analyze the spatial distribution of
the first four moments of the concentration PDFs, with a focus on the variance, its dissipation
and production and its spectral density. The information provided by the dataset, completed
by estimates of the intermittency factors, allow us to discuss the role of the main mechanisms
controlling the scalar dispersion and their link to the form of the PDF. The latter is shown to be
very well approximated by a Gamma distribution, irrespective of the emission conditions and
the distance from the source. Concentration measurements are complemented by a detailed
description of the velocity statistics, including direct estimates of the Eulerian integral length
scales from two-point correlations, a measurement that has been rarely presented to date.
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1 Introduction

The assessment of chronic and accidental risks related to the atmospheric dispersion of
contaminants requires the statistical characterization of its concentration. For chronic risks,
estimates of mean concentrations are sufficient. Conversely, when considering the accidental
risk due to releases of flammable and explosive substances, what matters is the occurrence of
instantaneous concentrationswithin flammability (or explosivity) limits. Similarly, studies on
the exposure and dosages of hazardousmaterials require estimates of the peak-to-mean ratios.
In all those cases, the need to characterize the concentration probability density function
(PDF) of the concentration arises. To this purpose, a variety of modelling strategies have
been adopted in the literature.

With the aim of modelling the PDF by inverting a limited number of moments, several
authors have tried to capture the bulk characteristics of the PDF inferring some functional
dependence between the higher-order moments of the concentration PDF. This information is
then intended to be used when running simple operational dispersion models, which provide
mean values only, so as to approximately estimate the statistical variability of the concentra-
tion about its mean. With this aim Chatwin and Sullivan (1990) sought simple relationships
between the mean concentration c and the standard deviation σc of a dispersing scalar in
statistically steady self-similar turbulent shear flows. Their analysis was further extended by
Mole and Clarke (1995), who demonstrated the existence of simple functional dependen-
cies between second-order, third-order and fourth-order moments of the concentration PDF.
Similar analyses were also conducted by Lewis et al. (1997) using field data in varying sta-
bility conditions, and, more recently, by Schopflocher and Sullivan (2005) using wind-tunnel
experimental data.

Other authors focused directly on the form of the PDF of the concentration. In the case
of high intermittent plumes, Yee and Chan (1997) proposed to model the concentration
as a clipped-Gamma distribution depending on three parameters that reduce to two as the
intermittency becomes negligible. This model was subsequently tested against experimental
results by Yee (2009), Klein and Young (2011), and Klein et al. (2011). In the case of
confined mixtures, Villermaux and Duplat (2003) showed that the concentration PDF could
be well described by a simple Gamma distribution in the whole domain (see also Duplat and
Villermaux 2008). More recently, Yee and Skvortsov (2011) showed that a simple Gamma
PDF could be used also to reliably model the concentration within a plume emitted from a
ground-level point source within a neutral boundary layer.

A more general approach relies on the development of models aiming to directly compute
the concentration PDF (or its lower order moments). This has been so far achieved by means
of meanderingmodels (Gifford 1959; Yee et al. 1994; Luhar et al. 2000; Franzese 2003), pair-
of-particles Lagrangian stochastic models (Durbin 1980; Sawford andHunt 1986), numerical
models resolving the concentration variance balance equation (Andronopoulos et al. 2002;
Milliez and Carissimo 2008), micro-mixing Lagrangian models (Sawford 2004; Cassiani
et al. 2005a, b; Leuzzi et al. 2012; Amicarelli et al. 2012) and large-eddy simulations (Xie
et al. 2004; Vinkovic et al. 2006; Philips et al. 2013).

The reliability of any of these modelling approaches has to be tested against experi-
mental data collected in field or laboratory experiments. Regarding concentration fluctu-
ations of passive scalar plumes in the turbulent boundary layer, two wind-tunnel studies
have been hitherto widely adopted as references. These are the pioneering works of Raupach
and Coppin (1983) for a line source and Fackrell and Robins (1982a) for point sources. The
latter, in particular, has represented a benchmark for more than two generations of authors,
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who presented several successful predictions of the experimental results using a variety of
modelling approaches (Fackrell and Robins 1982b; Sykes et al. 1984; Cassiani et al. 2005a;
Vinkovic et al. 2006).

Since the early 1980s, the experimental characterization of the statistical properties of a
fluctuating plume has been rarely tackled. More recent experimental work was performed by
Yee and Biltof (2004), who studied the concentration fluctuation within an obstacle array, and
Hilderman and Wilson (2007), who directly measured the meandering of a plume dispersing
in a water channel by using laser-induced fluorescence.

It is worth noting that these studies mainly focus on the second-order statistics and on
the correlation between velocity and concentration fluctuations. Relatively little information
is available concerning higher order concentration moments. There is therefore a lack of
information for assessment of the modelling of the spatial evolution of the concentration
PDFs. The objective of this study is to contribute a much needed set of experimental results,
by extending thework on source size and elevation conducted by Fackrell andRobins (1982a)
to higher order concentration moments, with a detailed definition of the plume structure
in its initial phase of growth. To that purpose we have conducted a series of wind-tunnel
experiments on the dispersion of a passive scalar emitted by a source of varying size and
height, within a turbulent boundary layer.We also investigate the role of the emission velocity
at the source that is likely to influence the near-field concentration statistics. The experimental
dataset is completed by a detailed description of the statistics of the velocity field. This
further information is essential in order to be able to dissociate errors induced by a specific
modelling approach to uncertainties introducedbyparametrizations used to substitutemissing
velocity data. In particular, considerable effort has been devoted here to obtaining direct
measurements of the Eulerian integral length scales from two-point velocity statistics. The
dataset is subsequently used in the second part of this study Marro et al. (2015) to further
investigate the dynamics of the dispersion process by adopting the conceptual framework of
a meandering plume model (Gifford 1959; Yee et al. 1994). In what follows Sect. 2 discusses
the role of the parameters that mainly control the dispersion process, and Sect. 3 presents
our experimental set-up and the measurement techniques. Section 4 presents the velocity
statistics and concentration measurements are presented in Sect. 5. Throughout, our data are
systematically compared to data of Fackrell and Robins (1982a).1

2 Governing Parameters

We consider the atmospheric dispersion of a passive scalar (with molecular diffusivity D
and with same kinematic viscosity ν and density ρ of ambient air) emitted by a localized
source, placed at a height hs from the ground, with a diameter σ0 and an ejection velocity
us, so that its mass flow rate is Mq = π

4 σ 2
0 ρ us. The release takes place within a turbulent

boundary layer with free-stream velocity u∞, and which is assumed to be fully characterized
by self-similar relations, obtained by rescaling profiles of velocity statistics on the friction
velocity u∗ and the boundary-layer depth δ. Given these assumptions, the moments of the
concentration c about its mean c at a given position (x, y, z) can be expressed as,

(c − c)n = f
(
σ0, hs, us, Mq , u∗, u∞, δ, D, ν

)
(1)

1 The complete dataset of velocity and concentration statistics is available on the site http://air.ec-lyon.fr.
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or, equivalently, in non-dimensional form as,

(c − c)n

�cn
= f

(
u∗
u∞

,
us
u∞

,
hs
δ

,
σ0

δ
, Re, Sc

)
(2)

where Re = u∞δ/ν and Sc = ν/D are the Reynolds and the Schmidt numbers, respectively,
and �c = Mq/(u∞δ2) represents a scale of the concentration variations.

In our experimental campaign we aim at studying the influence of three parameters, σ0/δ,
hs/δ, and us/u∞ (for a fixed Re, Sc and u∗/u∞), whose general effect on the dispersion
process is briefly described hereafter.

The diameter of the source is not effective in significantly altering the mean concentration
field, unless very close to the emission point. This can be evidenced by Taylor’s (1921)
formulation (adapted to an anisotropic velocity field) of the plume vertical σz , and transversal
σy spreads
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, (3)

σ 2
z = σ 2

0

6
+ 2σ 2

wTLw

{
t − TLw

[
1 − exp

(
− t

TLw

)]}
, (4)

where t is the flight time, TLv and TLw are the Lagrangian time scales and σv and σw are the
standard deviations of the lateral and vertical velocity components, respectively. According
to Eqs. 3 and 4, the influence of σ0 is non-negligible only for t � TL. Conversely, variations
of the source size have significant effects on the concentration fluctuation for larger distances
from the source, provided that its size σ0 is much smaller than that of the large eddies of
the atmospheric turbulence. To sketch these effects it is useful to refer to the conceptual
framework developed by Gifford (1959), who considered the concentration fluctuations to
be governed by two distinct phenomena: ameanderingmovement of the instantaneous plume,
causing the displacement of the mass centre, and the relative dispersion of the plume particles
relative to the mass centre position. The smaller the source, the larger the range of scales
contributing to the meandering motion that displaces the plume centre of mass, therefore
producing higher fluctuations around the mean concentration value.

The source elevation hs/δ has an influence on both the mean and the fluctuating concen-
tration fields. The effect on the mean can be again well explained by Eqs. 3 and 4, since, in
a turbulent boundary-layer flow, the parameters TLv , TLw , σv and σw are highly dependent
on the distance from the ground. Concerning the influence on concentration fluctuations, the
role of the source elevation hs/δ can be explained by similar arguments to those used for the
influence of σ0/δ. For a fixed σ0/δ, the emitted plume is subjected to a range of turbulence
scales that decreases as hs/δ decreases, since the source size approaches the size of the larger
eddies at the source height. This results in a damping of the contribution of the meandering
large-scale motion to the concentration fluctuations. As pointed out by Fackrell and Robins
(1982a, b) we may therefore expect that the influence of σ0/δ vanishes in the limit hs/δ → 0,
i.e. for a ground level source.

Finally, we consider the influence of us/u∞, which is the sole parameter characterizing the
dynamical conditions of the flow particles emitted at the source, according to the formulation
of the problem given by Eq. 1. It is usually supposed, even if not explicitly proved, that
if the outlet velocity us at the source equals the average velocity of the flow us over its
height (Fackrell and Robins 1982b) the influence of the emission conditions on the particle
trajectories is minimized since, once ejected, the flow particles rapidly adopt the statistics of
the external velocity field. Since us/u∞ = f (hs/δ), this isokinetic condition corresponds
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LLS ES

Fig. 1 Sketch of the wind-tunnel set-up showing the vortex generators and the turbulence grid at the entrance
of the test section, the roughness elements on the floor and the design of the lower-level source (LLS) and the
elevated source (ES) configurations

to a value us/u∞ that depends in turn on hs/δ only (for a fixed u∗/u∞). We expect a
varying us/u∞ to alter the plume dynamics in a near-source region, whose extent is however
undefined. Furthermore, we expect this extent to be significantly different when analyzing
the spatial distribution of different moments of the scalar concentration.

3 Experimental Set-Up and Techniques

3.1 Wind-Tunnel Set-Up

The experiments were performed in the atmospheric wind tunnel of the Laboratoire de
Mécanique des Fluides et d’Acoustique at the Ecole Centrale de Lyon in France. This is
a recirculating wind tunnel with a working section measuring 14 m long and 3.7 m wide. To
control the longitudinal pressure gradients the ceiling slope can be adjusted. In the present
configuration the ceiling has a positive slope, so that its height varies from 2m at the entrance
to 2.2 m at a distance of 7 m, and up to 2.5 m at its end. The air temperature in the wind
tunnel is regulated so that its variations during a 1-day experiment can be maintained in the
range ±0.5 ◦C.

The wind-tunnel set-up is sketched in Fig. 1. A neutrally-stratified boundary layer was
generated by combining the effect of a grid turbulence and a row of spires, placed at the
beginningof the test section, and roughness elements on thefloor. Thepresence of a turbulence
grid is not a usual feature of a boundary-layer simulation system, and is used here since it
assists in minimizing the inhomogeneities of the flow in the transverse direction. The spires
were of the Irwin (1981) type with a height H = 0.5 m, spaced by a distance H/2. The
entire working section floor was overlaid with cubes of side h = 0.02 m acting as roughness
elements. The cubes were placed in a staggered array and covered approximately 1.8 % of
the tunnel floor surface. This experimental set-up allowed us to reproduce a boundary layer
of depth δ = 0.8 m. Imposing a free-stream velocity u∞ = 5 m s−1, the Reynolds number
Re = δu∞/ν ≈ 2.6×105 (ν is the kinematic viscosity of air) was sufficiently high to ensure
the adequate simulation of a fully turbulent flow (Jimènez 2004).

Ethane (C2H6) was used as tracer in the experiments, since it has a density similar to air,
and was continuously discharged from a source of varying diameter and elevation. Three
source configurations were chosen:

123



420 C. Nironi et al.

ES 3 Elevated source at hs/δ = 0.19 and with σ0/δ = 0.00375 (hs = 152 mm and σ0 = 3
mm),

ES 6 Elevated source at hs/δ = 0.19 and with σ0/δ = 0.0075 (hs = 152 mm and σ0 = 6
mm),

LLS Lower-level source at hs/δ = 0.06 andwith σ0/δ = 0.00375 (hs = 48mm and σ0 = 3
mm).

The sources consisted of a metallic L-shaped tube (Fig. 1) and were placed at a distance of
7.5δ from the beginning of the test section, where the boundary layer can be considered as
fully developed (see Sect. 4). The horizontal side was approximately 30 times the source
diameter in order to reduce the influence of the vertical bar on the tracer dispersion. The
parameter σ0 refers to the internal diameter of the tube. The external diameter was equal to
4 mm for the σ0 = 3 mm source and to 8 mm for the σ0 = 6 mm source.

For most of the experiments, the outlet (spatially-averaged) velocity us of the ethane–air
mixture was equal to that in the surrounding flow at the source height us = u(z = hs), a
condition that is hereafter referred to as ‘isokinetic’. Experiments were also performed by
imposing a slower outlet velocity us/us = 0.03 (approximating the condition us/us → 0),
hereafter referred to as ‘hypokinetic’ condition.

In what follows y and z denote the transversal and vertical direction, respectively. We
consider two different origins of the longitudinal axis: the x ′-coordinate has its origin at the
beginning of the test section whereas the x-coordinate has its origin at the source location
(see Fig. 1).

3.2 Velocity Measurements

The flow dynamics were investigated by means of hot-wire anemometry, providing infor-
mation about the spectral characteristics of the velocity and supported by a series of
measurements with stereo particle image velocimetry (stereo-PIV), which allowed a knowl-
edge of its spatial structure. The spatial distribution of velocity statistics measured with the
two techniques are generally in good agreement. For a detailed comparative analysis of these
results, see Nironi (2013).

3.2.1 Hot-Wire Anemometry

The hot-wire constant temperature anemometer was equipped with a X-wire probe with a
velocity-vector acceptance angle of ±45◦, allowing for the simultaneous measurements of
two velocity components. Calibration was carried out in the wind tunnel using a pitot tube
to measure a reference velocity. The probe was not calibrated in yaw. In order to decompose
the calibration velocities from the X-probe into the longitudinal and transversal velocity
components (Jorgensen 2002), we adopted a yaw correction with constant coefficients k21 =
k22 = 0.0225.We acquired transversal and vertical profiles of the velocity statistics at varying
distances from the entrance of the test section, from x ′ = 4δ up to x ′ = 14δ. For each
measurement point we recorded a 120 s time series with a sampling frequency of 5000 Hz.
The experimental error, estimated by repeating themeasurements in afixed reference location,
was approximately ±2 % for the mean and the standard deviation.

3.2.2 Particle Image Velocimetry

A second series of velocity measurements was made with a stereo-PIV system. The ambient
air was seeded using a stage smoke generator, with approximately spherical 1 μm poly-
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ethylene glycol particles. A planar region of the flow was illuminated with a pulsed laser and
the tracer position was recorded as a function of time in doubly exposed photographs.

Stereo-PIV planes were collected at x ′ = 7.5δ. Velocities were recorded on two planes: a
yz-plane perpendicular to the flow direction and a xz-plane parallel to the flow, allowing for
the measurement of the three velocity components. The image resolution was 1280 × 1024
pixels and the observation field measured approximately 150 × 100 mm for xz-planes and
215 × 150 mm for yz-planes. Several planes were recorded at different heights to cover
most of the boundary-layer vertical extent. Images were processed using a cross-correlation
algorithm. The interrogation window for the correlation cells was fixed to 32 × 32 pixels
with a round form and a standard 50 % overlap, providing a spatial resolution of about
2 mm for xz-planes and 2.5 mm for yz-planes. A total set of 10000 image pairs was acquired
sequentially for time-averaged computations. The sampling frequency was 4 Hz.

3.3 Concentration Measurements

Concentration measurements were performed with a fast flame ionization detector (Fackrell
1980) with a sampling tube 0.3 m long, permitting a frequency response of the instrument
to about 400 Hz. Vertical and transversal profiles of concentration statistics were recorded at
various distances downwind, from x = 0.312δ (x = 250 mm) up to x = 5δ (x = 4000 mm).
Concentration statistics extracted from each time series recorded in a measurement point
include the mean, the standard deviation, the third and the fourth moments.

The calibration was carried out using ethane–air mixtures with concentrations equal to 0,
500, 1000 and 5000 ppm. Generally calibration was performed twice a day, as long as the
flame temperature of the flame ionization detector (which was continuously monitored) was
constant. When the flame temperature showed variations of more than 2 ◦C from its value
at the beginning of the experiment, calibration was repeated. The relation between ethane
concentration and tension response was linear, with a slope (representing the sensitivity of
the instrument) whose variations could reach ±3 %, depending on the ambient conditions.

The flow control system at the source was composed of two lines, ethane and air, each of
them equipped with a mass flow controller. The two lines then converged through a valve and
the ethane–air mixture was directed to the source. The ethane mass rate was kept constant
by the mass flow controller, working in the range 0.2 to 2 Nl min−1 and used within 10
and 100 % of its nominal range. Depending on ambient pressure and temperature (that were
continuously monitored and recorded), the airflow was regulated by the second mass flow
controller, in order to maintain the total volume flow rate at the source (and therefore the
outlet velocity us).

The error on the ethane–air flow rate was estimated by systematic comparison with mea-
surements provided by a volumetric counter. Themaximal difference betweenmeasurements
of the two instruments did not exceed ±3 %. It should be noted that the maximal error was
reached for measurements close to the source, where measuring concentration within the
calibration range (0–5000 ppm) required ethane flow rates of about 0.05 Nl min−1, i.e. out-
side of the mass flow controller working range. Conversely, for mass flow rates within the
instrument working range the uncertainty was reduced to about 1 %.

Recirculation of air in the wind tunnel implies background concentration increasing with
time. To take into account the contribution of this drift, the background concentrations were
recorded before and after acquiring any of the concentration time series. The background
concentration, which was assumed to evolve linearly with time from its initial to its final
value, was then subtracted from the signals.

123



422 C. Nironi et al.

While performing several measurement campaigns over two years, we observed that the
higher order statistics were affected by larger experimental error when measured in spring
and summer rather than in autumn and winter. This feature can be explained by the effect
of the sampling of atmospheric aerosol (Hall and Emmott 1991) that can induce anomalous
peaks in the signals. Due to seasonal changes in continental source strengths and in the
removal rate for atmospheric particles, this effect is at its highest in spring and summer
(Bergametti et al. 1989). Therefore, the data presented herein all refer to measurement cam-
paigns in autumn and winter, when the disturbance produced by the atmospheric aerosol is
minimal.

An averaging time of 300 s was chosen, allowing the stochastic uncertainty of the con-
centration statistics calculated from finite length time series to be of order 0.1 %, so that
its contribution to the experimental error was negligible. The main sources of experimental
errors were instead related to the calibration, the sampling of atmospheric aerosols and the
flow rate at the source. The relative influence of each of these factors is however difficult
to estimate a priori. Therefore, in order to quantify a global experimental error, during our
campaign we collected a sample of 20 measurements in each of four fixed locations with
respect to the source. These measurements were performed on different days with a time
interval of several weeks one to the other. The delay between calibration and measurement
was variable (up to four hours). Therefore the statistics extracted from these signals were
affected by all the uncertainties due to the experimental chain. The error was then estimated
as twice the standard deviation computed over the 20 values collected for each point. The
results show that, in the far field, the first two moments of the concentration are affected by
an error of 2 % whereas the error rises up to 4.5 % for third- and fourth-order moments.
In the near field, the error in the third- and fourth-order moments remained similar to that
estimated in the far field. However, due to the higher uncertainty affecting the source flow
control system in the near-field measurements, the error in the first two moments, the mean
and the standard deviation, reached ±3 %.

4 Velocity Field

We begin by presenting vertical profiles of one-point velocity statistics and spectra, measured
by hot-wire anemometry in the flow within which the scalar dispersion takes place. This is
a boundary-layer flow over a rough wall with light adverse longitudinal pressure gradient
≈ −0.095Pa m−1 (as estimated from the measurements of the free-stream velocity u∞
for varying distances from the entrance of the test section). Further on, the focus is on the
estimates of the integral length scales from PIV two-point correlations, and on the derived
estimates of the Lagrangian time scales.

4.1 Vertical Profiles of One-Point Velocity Statistics

In order to compare our results to equivalent data by Fackrell and Robins (1982a), we adopted
the typical scalings indicated by the similarity theory (Tennekes and Lumley 1972). Based
on this theory, the turbulent boundary layer consists, in the simplest view, of an outer and an
inner region, the latter including the inertial region and the underlying roughness sublayer
(Raupach et al. 1980), extending for a few roughness heights away from the wall. According
to the theory, the surface geometry is seen as a boundary condition affecting the flow field
as a wall distributed drag, quantified by the roughness length z0, except close to the wall, in
the roughness sublayer.
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It is generally assumed that, if a proper set of scales is chosen, each region can be described
by some form of similarity solution. These are the friction velocity u∗, the roughness length
z0 and boundary-layer depth δ, representing an inner and an outer length scale, respectively.
The bulk properties of the mean velocity distribution in the inertial region u(z) are derived
by a classical asymptotic matching procedure (in the double limit z/z0 → ∞ and z/δ → 0),
yielding to the familiar logarithmic law (Tennekes 1982),

u(z)

u∗
= 1

κ
ln

(
z − d

z0

)
, (5)

where κ = 0.4 is the Von Kármán constant and d is the displacement height (Thom 1971;
Jackson 1981). In order to quantify the three parameters u∗, d and z0, we have adopted the
same procedure as Salizzoni et al. (2008). Firstly we have estimated the friction velocity

from the Reynolds stress u′w′ profile as u∗ =
√

−u′w′, by averaging the u′w′ data in the
lower part of the flow field, where these vary only slightly with respect to their average value
(Fig. 2f). The two other parameters, z0 and d , are then estimated by a best fit of the mean
velocity profile with a logarithmic law (Fig. 2b), assuming the computed value of u∗. From
our measurements we obtained u∗ = 0.185 m s−1, z0 = 1.1 × 10−4 m and d = 0.013 m.
A value of δ = 0.8 ± 0.05 m was estimated by the u′w′ profile, as the height at which

d
(
u′w′

)
/dz ≈ 0. In principle, the effective value of the outer scale should be taken as δ−d .

However, since d is here smaller than the uncertainty in the estimate of δ, we will use the
latter as the reference length scale to normalize velocity profiles.

A comparison between boundary-layer parameters in our flowand those of the experiments
of Fackrell and Robins (1982a) is given in Table 1. As predicted by the theory, and as shown
in Fig. 2b, Eq. 5 fits the velocity profile in a region that slightly exceeds the extent on the
inertial region, for 0.025 ≤ z/δ ≤ 0.25. Conversely, a good fit of the mean velocity profile
in the whole turbulent boundary layer extent can be obtained by a power law of the form,

u(z)

u∞
=

( z
δ

)n
, (6)

with the exponent n = 0.23 (Fig. 2a).
Profiles of the velocity statistics plotted in Fig. 2 show limited development with increas-

ing x ′. Therefore, as a first approximation, we consider that from x ′/δ = 7.5 the flow is
homogeneous in the horizontal plane, since the development of coherent structures in the
wake of the vortex generators has already reached an equilibrium condition (Salizzoni et al.
2008).

Due to a different wall roughness z0, our profile of u/u∞ differs from that of Fackrell and
Robins (1982a) (Fig. 2a). However the two profiles collapse, in the lower part of the velocity
field, when normalized by an inner scaling (Fig. 2b). Similarly, vertical profiles of higher
order velocity statistics tend to collapse on a single curve when normalized with u∗ and δ

(Fig. 2c–f). The only relevant discrepancies are observed in the σv/u∗ profiles (Fig. 2d).
General good agreement (Fig. 2g) is also observed in the profiles of the non-dimensional

turbulent kinetic energy (TKE)mean dissipation rate, referred to as ε. Two estimates of εwere
obtainedhere bymeansof the hot-wire anemometer data and employing the common isotropic
approximation and Taylor’s hypothesis of frozen turbulence to convert spatial gradients to
temporal gradients, a procedure that may induce non-negligible errors close to the wall, as
the turbulent intensity σu/u exceeds 0.3. The first estimate is computed as (Hinze 1975)
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Fig. 2 Vertical profiles of non-dimensional velocity statistics and comparison with literature data from Fack-
rell and Robins (1982a). a Mean longitudinal velocity component; b mean longitudinal velocity component
rescaled on inner scaling; standard deviations of the c longitudinal, d lateral component, and e vertical velocity
component; f Reynolds stress u′w′ (opens symbols) and u′v′ (filled symbols); g estimates of the dissipation
rate ε and production P of TKE
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Table 1 Boundary-layer characteristics: comparison with data from Fackrell and Robins (1982a) (F&R)

δ (m) z0 (m) u∞ (m s−1) u∗ (m s−1) z0/δ u∗/u∞

Present study 0.8 1.1 × 10−4 5 0.185 1.4 × 10−4 0.037

F&R (1982a) 1.2 2.9 × 10−4 4 0.188 2.4 × 10−4 0.047

εiso = 15ν

u2

(
∂u′
∂t

2
)

whereas the second, referred to as εsp is obtained by fitting the one-

dimensional spectra (Sect. 4.2) of the longitudinal velocity component in the inertial region
adopting the relation E(k) = α1ε

2/3
sp k−5/3, where k = 2π f/u is the wavenumber, f is the

frequency and α1 = 0.5 (Pope 2000). The two estimates of ε agree well one with the other

and they are also very close to those of TKE production P ≈ u′w′ ∂u
∂z

(Fig. 2g), showing that,

in most of the boundary layer, we can reasonably assume a condition of local equilibrium
between production and dissipation of TKE.

Finally, we note that our velocity field is characterized by slight inhomogeneities in
the mean longitudinal velocity along the y-direction. This implies non-null values of
the u′v′ Reynolds stress component (Fig. 2f) and a non-null lateral component of the
mean transversal velocity v, whose intensity is about 1 % of that of the longitudinal
component u.

4.2 Spectra

Spectra for the three velocity components derived from hot-wire anemometry are shown
in Fig. 3, for increasing distances from the wall. These are normalized using the distance
z as a length scale and the friction velocity u∗ as a velocity scale, and plotted against the
dimensionless frequency n = f z/u.

The measured spectra for u, v andw are compared to the model proposed by Kaimal et al.
(1972), based on the Kansas field experiments,

nSu(n)

u2∗
= 102n

(1 + 33n)5/3
, (7)

nSv(n)

u2∗
= 17n

(1 + 9.5n)5/3
, (8)

nSw(n)

u2∗
= 2.1n

1 + 5.3n5/3
. (9)

The measured spectra show good agreement with Kaimal’s model in both the produc-
tion and the inertial subrange (Fig. 3). This comparison allows us to evidence the similarity
between the spectral energy distribution in our simulated flow with that observed in the
atmospheric boundary layer. The extension of the inertial subrange in our velocity field
is smaller than that occurring in a real atmosphere (due to a reduced Reynolds num-
ber). However, the existence of inertial subrange extending over one (or more, depending
on the distance from the wall) decade of non-dimensional frequencies (Fig. 3), demon-
strates a clear separation between the larger scale energetic eddies and the dissipative
scale.
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Fig. 3 Velocity spectra of the three velocity components for growing distances from the wall, z/δ. Compar-
ison with a model extrapolated from field data (Kaimal et al. 1972). a longitudinal component Su , b lateral
component Sv , and c vertical component Sw

4.3 Integral Length and Time Scales

The characterization of the structure of the large-scale fluctuating motion in an inhomoge-
neous and anisotropic shear turbulent flow requires the evaluation of a variety of length scales
(Carlotti and Drobinski 2004). These can be conveniently estimated from two-point spatial
correlation coefficients, defined as,

ρi i (x, r) = u′
i (x)u

′
i (x + r)

u′
i
2

, (10)

where u′
i represents the velocity fluctuations of u, v andw, x is a fixed point and r is a generic

vector. In this study, correlation coefficients were estimated by stereo-PIV measurements,
made at a distance of approximately 8δ from the beginning of the test section. Measurements
in the xz-plane allowed the measurements of the coefficients ρuu and ρww whereas measure-
ments on the yz-plane provided information on the coefficient ρvv . As an example of our
results, we report in Fig. 4 the correlation maps obtained for the xz-plane within the inertial
region. On the same plots we show the profiles of the correlation coefficient extracted along
the x and z axes. A rapid examination of the plot on Fig. 4 reveals the strong anisotropy
characterizing the large-scale flow in the lower part of the boundary layer. The spatial extent
of the correlation ρuu(x, z) is considerably wider than that of ρww(x, z), and the topology
of the iso-contours is highly different for the two functions.
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Fig. 4 Two-point spatial correlations in the lower part of the velocity field measurements on the xz-plane: a
and b ρuu ; c and d ρww

The iso-correlation of ρww(x, z) can be well approximated by an ellipse with a major axis
aligned in the z-direction that is slightly larger than that longed in the x-direction. Conversely,
the iso-lines of ρuu(x, z) are elongated in the x-direction and are tilted of about 15◦ with
respect to the x-axis due to the shear produced by the wall roughness (Krogstad and Antonia
1994).

As well as allowing a qualitative description of the flow structure, the correlation fields
can be used to extract estimates of characteristic length scales, usually referred to as Eulerian
integral length scales, defined as

�i i, j (x) =
∫ ∞

0
ρi i (x, r, e j )dr. (11)

where e j is the unit vector in the j = x, y, z directions.
The numerical computation of the integral in Eq. 11 from experimental data can be affected

by non-negligible errors. Therefore the estimate of the Eulerian integral length scales is
generally calculated as the distance at which the correlation function falls below a threshold
value. For exampleBewley et al. (2012) assumed a value of 0.5whereas Takimoto et al. (2013)
adopted 0.4. Note that this method may be problematic when computing scales associated to
the ρuu functions, since the extent of the iso-correlation lines corresponding to the threshold
value may not be fully captured by the PIV field (see Fig. 4). Similar problems can be
encountered for any of the three functions ρi i at larger distances from the wall as the size of
the eddies is at its highest.

123



428 C. Nironi et al.

Luiui/δ
z/

δ

Luu/δ

Lvv/δ

Lww/δ

κz/δ

0 0.03 0.06 0.09 0.12 0.15 0.18
0

0.2

0.4

0.6

Lvv/δ

z/
δ

Lvv/δ

0.2 σ3
v/(ε δ)

0.4 σ3
v/(ε δ)

0.6 σ3
v/(ε δ)

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

Lww/δ

z/
δ

Lww/δ

0.4 σ3
w/(ε δ)

0.6 σ3
w/(ε δ)

0.8 σ3
w/(ε δ)

0 0.04 0.08 0.12
0

0.2

0.4

0.6

(a)

(b) (c)

Fig. 5 aVertical profiles of the Eulerian integral length scales from PIVmeasurements. Integral length scales,
b Lvv and c Lww compared to estimates provided by Eqs. 13 and 14 where the proportionality constant αv

and αw varies in the range 0.2–0.8

In order to avoid these inconveniences, we assume here that the correlation coefficient is
an exponential function of the type,

ρi i, j (x, r, e j ) = exp

(

− r

Lii,e j

)

, (12)

andwe adopt the lengths Lii,e j as ameasure of�i i, j [this corresponds to the distance at which
ρi i, j = e−1 ≈ 0.37 (Tritton 1988)]. The choice of a negative exponential is motivated by the
shape of the correlation functions profiles (see Fig. 4b and d), characterized by a sharp peak at
r → 0, that hides the presence of any horizontal asymptote of the curves for r = 0. This evi-
dences that the influenceof viscous effects is limited to a tiny region, smaller than thePIVmea-
suring volume. To simplify the notation, the three scales Luu,ex , Lvv,ey , Lww,ez , obtained by
fitting Eq. 12 to the data in the x , y, z directions will be hereafter referred to as Luu , Lvv , Lww.

The dependence of these three scales on the distance from the wall is depicted in Fig. 5a.
The longitudinal length scale Luu is by far the longest and is almost double the transversal
scale Lvv . As expected, Lww is the smallest, even though only slightly smaller (of order
25 %) than Lvv . Figure 5a also shows that, as predicted by similarity theory, in the lower
part of the turbulent boundary layer, Lww scales as κz to about z/δ ≈ 0.15, which represents
approximately the upper limit of the inertial layer.

We stress here the importance of the scales Lvv and Lww in the overall dispersion phenom-
enon of a passive scalar plume.Nonetheless their determination in dispersion studies ismostly
based on indirect procedures, based on dimensional analysis or similarity considerations.
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These estimates are therefore affected by unpredictable errors, especially that of Lvv . Indeed,
unlike Lww , whose upper bound can be evaluated as a fraction of δ, the amplitude of Lvv can-
not be evaluatedby a simple ‘rule of thumb’,which could provide at least a rough estimate of it.

In the modelling of the mass and momentum transfer across the boundary layer, the scales
Lvv and Lww can be parametrized assuming the stationarity of the energy cascade as (Sawford
and Stapountzis 1986),

Lvv ≈ αv

σ 3
v

ε
, (13)

Lww ≈ αw

σ 3
w

ε
, (14)

where αv and αw are proportionality constants (in these cases σv , σw and ε are usually cal-
culated from similarity relations). Since we have direct estimates of these velocity statistics,
we can test here the reliability of the parametrizations given by Eqs. 13 and 14 and determine
appropriate values for αv and αw . These parameters are generally assumed in the literature
to be free parameters, whose determination mainly rely on matching of numerical results
with experimental data rather than on making reference to previous experimental estimates
(that are lacking as far as we are aware). As shown in Fig. 5b and c, Eqs. 13 and 14 provide
excellent estimates of Lvv and Lww assuming αv ≈ 0.4 and αw ≈ 0.6, respectively. Note
that both values are significantly lower than those currently adopted in the literature, which
vary between a minimum of 0.8 (Sawford and Stapountzis 1986) and a maximum of 1.8
(Postma et al. 2011).

The direct measurements of the Eulerian integral length scales can be further used to
estimate the characteristic ‘life time’ of the larger scale flow structures as (Tennekes and
Lumley 1972; Frisch 1995),

TLv1 ≈ Lvv

σv

, (15)

TLw1 ≈ Lww

σw

. (16)

They can be used as a measure of the Lagrangian time scales, referred to here as TLv and
TLw , which are key parameters in the modelling of pollutant dispersion. As the measurement
of the Lagrangian time scales TLv and TLw is extremely difficult to achieve, for dispersion
modelling purposes, they are usually parametrized as (Tennekes 1982),

TLv2 = 2σ 2
v

C0ε
(17)

TLw2 = 2σ 2
w

C0ε
, (18)

where C0 is the Kolmogorov constant, introduced as a universal constant when referring to
a homogeneous and isotropic turbulent flow. However, there is no experimental evidence of
the universality of C0 in inhomogeneous and anisotropic turbulence, and its estimate in the
literature is in the range 2 ≤ C0 ≤ 8 (Du et al. 1995; Lien and D’Asaro 2002; Rizza et al.
2006). Given this variability, in most pollutant dispersion studies C0 is usually considered
a flow dependent parameter and its value estimated a posteriori, as that providing the best
agreement between experimental and numerical concentration results.

A first estimate of C0 can be achieved here by taking advantage of the experimental
profiles of ε, Lww and Lvv . By injecting Eqs. 13 and 14 into Eqs. 15 and 16 and assuming
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TLv1 = TLv2 and TLw1 = TLw2 we obtain C0 = 2/αv,w . The two equalities provide slightly
different values of the Kolmogorov constant that lie in the range 3.5 ≤ C0 ≤ 5. Further
discussion of the values of C0 is provided in Sect. 5.1.1 where we analyze the vertical and
lateral spreading of the passive scalar plume.

5 Concentration Field

We begin by the analysis of the influence of the size and elevation of the source on the first
two moments of the concentration PDF (Sect. 5.1). As a second step, we focus on the role
of varying emission conditions (Sect. 5.2) and consider the longitudinal evolution of the
intermittency factor for all the cases considered (Sect. 5.3). We discuss then the modelling
of the concentration PDF (Sect. 5.4) and its physical significance, in particular regarding
the dynamics of the dispersion phenomenon. In the light of this discussion, we conclude by
presenting the profiles of the third and four moments of the concentration PDF.

The mean is computed as c∗ = 1
N

∑N
j=1 c

∗
j whereas the higher order moments are com-

puted as m∗
nc =

[
1
N

∑N
j=1(c

∗
j − c∗)n

]1/n
(for n = 2, 3, 4), N being the number of samples

in the time series and c∗ the non-dimensional instantaneous concentration. In what follows,
the second-order moment m∗

2c is denoted as σ ∗
c .

In normalizing the concentration data we have expressly avoided adopting local scales,
such as the maximal mean concentration or standard deviation and we have adopted �c as
unique concentration scale (Sect. 2). This is motivated by the need to preserve the information
on both the form of the profiles and the magnitude of the peaks, for increasing distances from
the source. Note that, due to the transversal flow inhomogeneities discussed in Sect. 4.1 that
tend to induce a deviation in the plume axis with respect to the wind-tunnel axis, the mean
concentration maxima tend to be shifted to the right of the source. However, in plotting the
results, we have included a slight lateral offset in the transversal profiles of the concentration
moments, so that the concentration maxima occur at y = 0.

5.1 Influence of Source Height and Size

As discussed in Sect. 2, the effect of varying source size and elevation on the concentration
moments is related to the interaction of the plume with the eddies having characteristic
dimensions exceeding the local plume width. We have therefore chosen the size of the two
sources (σ0 = 3mmand σ0 = 6mm) so that bothwere significantly smaller than the Eulerian
integral length scale, as estimated from the PIV measurements. For similar reasons, the ES
and LLS were placed in regions of the flow characterized by marked differences in the values
of the Eulerian integral length scales. Note that the non-dimensional height hs/δ = 0.19
and size σ0/δ = 0.0075 of the ES is the same as that of the elevated source used in the
experiments of Fackrell and Robins (1982a). This feature allows us to compare our results
with their dataset.

5.1.1 Mean Concentration Field

Transversal and vertical profiles of the mean concentration downwind from the source are
plotted in Fig. 6a–d. Profiles of the ES and different σ0 do not show any particular difference
(Fig. 6a, b), except very close to the source (x/δ = 0.3125). Conversely, the effect of source
elevation is evident. Since the LLS emits closer to the ground, thewall reflection rapidly alters

123



Dispersion from a Point Source in a Turbulent… 431

y/δ

c∗

ES 6 exp
ES 3 exp
LLS exp
ES 6 Eq. 19
ES 3 Eq. 19
LLS Eq. 19

-0.2 -0.1 0 0.1 0.2
0

50

100

150

200

c∗

z
/δ

ES 6 exp
ES 3 exp
LLS exp
ES 6 Eq. 20
ES 3 Eq. 20
LLS Eq. 20

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

y/δ

c∗

ES 6 exp
ES 3 exp
LLS exp
ES 6 Eq. 19
ES 3 Eq. 19
LLS Eq. 19

-0.8 -0.4 0 0.4 0.8
0

4

8

12

16

20

c∗

z/
δ

ES 6 exp
ES 3 exp
LLS exp
ES 6 Eq. 20
ES 3 Eq. 20
LLS Eq. 20

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

x/δ

σ
y
/δ

,σ
z
/δ

σy/δ

σz/δ

Eq. 3
Eq. 4

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

σ
y
/δ

, σ
z
/δ

x/δ
0 1 2 3 4 5

0

0.05

0.1

0.15

0.2

0.25

0.3

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Mean concentration field for ES andLLS. a–d transversal and vertical profiles of c∗ at various distances
downwind: a and b x/δ = 0.625; c and d x/δ = 3.75. Transversal profiles were measured at the source height
and vertical profiles were measured on the plume axis. e ES and f LLS plume spreads σy and σz

the plume structure. As the distance from the source increases, the mean concentrations for
the LLS plume become larger than those measured for the ES, with a maximum that is about
two times the value reached by the ES plume (Fig. 6c, d).

For both ES and LLS, transverse profiles measured at the source height are satisfactorily
reproduced by a Gaussian distribution of the form,

c(x, y) = Mq

2πσyσzuadv
exp

(

− y2

2σ 2
y

)

. (19)
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Concerning the vertical profiles, the Gaussian distribution with total reflection on the
ground is the most suited to the reproduction of the mean concentration distribution in the
vertical direction (Arya 1999),

c(x, z) = Mq

2πσyσzuadv

[
exp

(
− (z + hs)2

2σ 2
z

)
+ exp

(
− (z − hs)2

2σ 2
z

)]
, (20)

where uadv is the mean longitudinal velocity taken at the plume centre of mass.
Experimental mean concentrations were fitted by the simple and reflected Gaussian dis-

tributions, i.e. Eqs. 19 and 20, adopting σy and σz as free parameters. The resulting values
of the vertical and transversal plume spreading are shown in Fig. 6e, f, where no distinction
is made between smaller and larger ES sources, since their mean concentration fields are not
distinguishable one from the other. For both the ES and the LLS, in the near field as well as
in the far field, the vertical spreading was observed to be less than the lateral one.

Plume spreads σy and σz are modelled according to Taylor’s statistical theory from Eqs. 3
and 4. In order to take into account the effects of the inhomogeneity of the velocity field,
parameters σv and TLv (as well as σw and TLw) are estimated at the height of the plume centre
of mass, whose elevation evolves with the distance from the source. For the same reasons,
the flight time is estimated as t = x/uadv.

Equations 3 and 4 were fitted to the experimental values of σy and σz expressing TLv and
TLw from Eqs. 17 and 18 and adopting C0 as a free parameter. It is worth noting that the best
agreement between experimental and modeled plume spreads is obtained for C0 = 4.5 (Fig.
6e, f), a value that falls in the range 3.5 ≤ C0 ≤ 5 identified by the analysis of the integral
length and times scales (Sect. 4.3). For the ES, the model agrees well with experimental data.
A satisfactory agreement for σz is also found for the LLS, while σy is overestimated starting
from x/δ = 1.25.

5.1.2 Standard Deviation

Unlike the mean, the standard deviation σ ∗
c shows a strong dependence on the source size,

extending to a considerable distance away from the source. Transverse profiles of σ ∗
c down-

wind of the source for the elevated sources are presented in Fig. 7a, c, e, while the vertical
profiles of ES and LLS are shown in Fig. 7b, d, f. A strong dependence on the source size
is visible near the source: the σ ∗

c field from the smaller source is characterized by signifi-
cantly higher values. The difference between the two fields diminishes moving downwind
and finally vanishes in the far field for x/δ = 3.75. As discussed in Sect. 2, this effect can be
explained by the larger range of scales that act on the plume generated by the smaller source,
resulting in an enhanced meandering motion.

Source elevation also has a strong influence, as shown in Fig. 7b, d, f. The ES emission
results in a higher concentration standard deviation. Even in this case, this difference can be
attributed to the different scales of motion that are effective in dispersing the plume. As evi-
denced in Sect. 4.3, the Eulerian integral length scales are reduced significantly approaching
the ground. Therefore, for the LLS emission, the amplitude of the meandering motion acting
on the plume is smaller compared to the ES case, thus generating less intense concentration
fluctuations. These slight differences between ES and LLS plumes persist until the latest
measurement station. The variation of the source height is also reflected on the shape of
the profiles of σ ∗

c . While the σ ∗
c profiles from the ES always have a Gaussian form, those

produced by the LLS gradually lose their Gaussian shape moving downstream, and level off
at the plume centreline (Yee and Wilson 2000).

123



Dispersion from a Point Source in a Turbulent… 433

y/δ

σ
∗ c

ES 6
ES 3
LLS

-0.2 -0.1 0 0.1 0.2
0

100

200

300

400

z
/δ

σ∗
c

0 100 200 300 400
0

0.1

0.2

0.3

y/δ

σ
∗ c

-0.4 -0.2 0 0.2 0.4
0

20

40

60

80

100

120

z/
δ

σ∗
c

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

y/δ

σ
∗ c

-0.8 -0.4 0 0.4 0.8
0

2

4

6

8

10

z/
δ

σ∗
c

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

(a) (b)

(c) (d)

(e) (f)

Fig. 7 Transversal profiles (at the source height) and vertical profiles (at the plume centre) of σ∗
c for the ES

and LLS, at various distances downwind: a and b x/δ = 0.625; c and d x/δ = 1.25; e and f x/δ = 3.75

The variable role of meandering can be conveniently enlightened by analyzing one-
dimensional spectra of concentration E(k) measured on the centreline at various distances
from the source. These are presented in Fig. 8 in non-dimensional form, normalized as
E∗ = Eδ/σ 2

c and as a function of kδ. In the near field of the ES plumes, the more intense
meandering motion acting on the small source (σ0 = 3 mm) produces larger scale concen-
tration fluctuations compared to the larger one (σ0 = 6 mm), that are reflected in a higher
spectral density for small wavenumbers. The differences between the two spectra are pro-
gressively reduced for higher wavenumbers, or fine length scales, at which relative dispersion
is predominant. Figure 8a also helps explain the effect on the plume fluctuations due to a
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Fig. 8 Spectra of concentration fluctuations on the plume centreline, at two distances from the source. Com-
parison between the spectra from the ES with 3 and 6 mm diameter (measured at z/δ = 0.19) and the LLS
(measured at z/δ = 0.06). a x/δ = 0.625, b x/δ = 3.75. For a cut-off frequency of about 400 Hz, the non-
dimensional cut-off wavenumber is in the range 600 < kδ < 700. Dotted line represents −5/3 dependence
on kδ

source of varying height and constant diameter (σ0 = 3 mm). The large-scale fluctuations
in the LLS are significantly reduced compared to the ES, since the plume is submitted to
the dispersive action of eddies that are smaller than those experienced by the ES (Sect. 4.3).
It is also worth noting how the smaller scale fluctuations appear to be more intense along
the centreline of the LLS plume, which is much more sensitive to the small-scale turbulence
generated close to the wall. In the far field (Fig. 8b), the lateral and vertical dimensions of the
ES plumes exceed those of the bigger structures in the flow (Sect. 4.3). In these conditions,
the meandering motion is suppressed and the concentration spectra of the two ES plumes
superpose. These are however still different from the spectrum recorded at the LLS plume
centreline, which shows reduced large-scale fluctuations and a more prominent role of the
smaller eddies in the inertial range.

Further insight into the influence of source size on the plume dynamics can be gained by

considering the spatial distribution of the production P = u′
j c

′ ∂c

∂x j
(u′

j c
′ is the correlation

between velocity and concentration fluctuations) and dissipation εc = D

(
∂c′
∂x j

∂c′
∂x j

)

of the

concentration variance at varying distances from the source. Following Fackrell and Robins
(1982a) we deduced εc from the measured spectra of concentration E(k) by means of the

relation E(k) = αc2εcε− 1
3 k− 5

3 , with αc = 0.6. Even though the −5/3 slope inertial region
in the concentration spectra is narrow compared to velocity spectra, this estimate was shown
to be quite accurate compared to estimates of εc obtained as the residual of the concentration
variance balance equations. Nevertheless, ‘quite accurate’ here involves errors that can reach
±25 %.

The production term is estimated adopting a simple gradient law closure model

as P ≈ Dty

(
∂c

∂y

)2

+ Dtz

(
∂c

∂z

)2

, where the turbulent diffusivities are computed as

Dty(x) = 2uadv
dσ 2

y

dx
and Dtz(x) = 2uadv

dσ 2
z

dx
.

Vertical profiles of the variance production and dissipation (in non-dimensional form)
for the two ES plumes are shown in Fig. 9 for two distances from the source. As expected,
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Fig. 9 Vertical profiles of the non dimensional production and dissipation of concentration fluctuations at a
growing distance from the source. Comparison between the elevated sources with σ0 = 3mm and σ0 = 6 mm:
a x/δ = 0.625, b x/δ = 3.75

in the far field (x/δ = 3.75) profiles of P and εc do not show any significant differ-
ence depending on the source size. In the near field (x/δ = 0.625) the dissipation rate
is higher for the small 3 mm source. At both locations, the production term for the two
cases is several orders of magnitude lower than εc. This means that the higher σ ∗

c observed
for the σ0 = 3 mm source (compared to the σ0 = 6 mm one) has to be attributed to an
enhanced production occurring very close to the source location (over a distance smaller
than x/δ ≈ 0.3). Unfortunately, our experimental set-up does not allow us to investigate
the plume for x/δ < 0.3125. This would require a considerable reduction in the ethane
flow rate at the source, in order to perform measurements in the FID calibration range.
As discussed in Sect. 3.3, the main limitations for this are imposed by the mass-flow
controller, whose error rises significantly for flow rates < 0.05 Nl min−1. Further exper-
iments are therefore needed to investigate the dynamics of the plume in this very near-field
region.

5.1.3 Comparisons with Fackrell and Robins (1982a)

Passive scalar dispersion experiments performed in this study took place in a velocity field
(Sect. 4) that is different than that presented in Fackrell and Robins (1982a), since it develops
under the forcing action of a different free-stream velocity u∞ and over a different wall
roughness z0, both of which result in a different ratio u∗/u∞ (see Table 1). However, as dis-
cussed in Sect. 4.1, the two velocity fields can be considered similar, as a first approximation,
since non-dimensional profiles of the velocity statistics of the two datasets show a generally
good agreement. Therefore, so long as the source parameters hs/δ and σ0/δ remain constant,
we expect the non-dimensional profiles of concentration statistics to collapse onto common
curves. To that purpose it is however necessary to convert the longitudinal distances from the
source to a non-dimensional time, computed as the ratio between the flight time t = x/uadv
and a characteristic turbulent scale τ = δ/u∗.

The comparison shown in Fig. 10, concerns longitudinal profiles of three parameters,
originally plotted in Fackrell and Robins (1982a). These are the non-dimensional maximal
mean concentration max(c), the plume half-widths sy and sz (an alternative measure of
the plume spread, defined as the distance at which the mean concentration falls to half
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its maximum), and the intensity of concentration fluctuations computed as the ratio of the
maximum r.m.s., max(σc), to max(c).

The longitudinal evolution of max(c) and of sy and sz for the ES plumes are indeed in
very good agreement with those presented in Fackrell and Robins (1982a). Conversely, data
of max(σc)/max(c) for the ES show non-negligible differences. Even though the general
tendency of the two profiles is the same, our data exhibit a lower peak value occurring
closer to the source. The rate at which max(σc)/max(c) decreases once the peak is reached
appears more pronounced in our experiments. The reasons for these differences are not self-
evident since they cannot be simply linked to differences in the velocity statistics. A possible
explanation concerns different conditions very close to the source, where almost all of the
production of σc occurs. There, a different source design can induce different outlet velocity
profiles or different dynamics within the source wake that may significantly alter the process
of variance production.

Finallywe also report a comparison ofmax(σc)/max(c) between our LLS and the ground-
level source (GLS) of Fackrell and Robins (1982a). It should be noted that the two plumes
tend to a same constant value of fluctuation intensity ≈0.4, except for a near-field region in
which, as expected, the fluctuation intensity of our LLS is higher than that of their GLS.
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Fig. 11 Comparison between isokinetic and hypokinetic conditions: transversal profiles at x/δ = 0.3125 of
a mean concentration c∗, and b standard deviation σ∗

c

5.2 Influence of the Emission Conditions

The evidence that most of the concentration variance is produced in a relatively limited
region very close to the source emphasizes the need to analyze the effect on the concen-
tration field of varying emission conditions (Sect. 5.1.2), which are here assumed to be
fully governed by the parameter us/us. The interest is focused on two emission conditions
(see Sect. 3): us/us = 1, i.e. isokinetic conditions, and us/us = 0.03 (approximating the
condition us/us → 0) referred to as hypokinetic conditions. Investigating the effect of
a highly forced source condition, i.e. us/us 
 1, is conversely beyond the aim of this
study.

Concentration profiles were measured close to the source, at stations x/δ = 0.3125 and
x/δ = 0.625 (Fig. 11). Measurements show that the differences between the hypokinetic and
isokinetic conditions for the σ0 = 3 mm source are negligible at both distances. Conversely
for the ES with σ0 = 6 mm the emission conditions produce non-negligible differences in
the concentration statistics at x/δ = 0.3125 that are then no longer detectable at x/δ =
0.625. We can therefore conclude that this effect extends over a distance x < 80σ0, and
is therefore significantly reduced compared to that induced by a variation in the source
diameter.

For ES 6 mm, the hypokinetic emission produces a smaller mean concentration and
standard deviation than the isokinetic emission. In a sense, we can say that generally
the hypokinetic emission results in a reduced effective source, which produces therefore
enhanced concentration fluctuations. In most of the studies on passive scalar dispersion
in turbulent boundary layers, it is implicitly assumed that the particles emitted at the
source take the statistics of the external velocity field almost instantaneously, so that
there is no difference between Lagrangian statistics of the fluid particles injected at the
source and those in the ambient fluid passing close to it. However it is worth noting
that we do not have any information to identify which of the two conditions (isokinetic
or hypokinetic) induce a concentration field that is closer to the one generated by these
ideal source conditions. This is a feature that certainly deserves to be further analyzed, by
comparing our experimental data with numerical results of computational fluid dynamics
models or Lagrangian stochastic models obtained by varying the emission conditions at the
source.
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Fig. 12 Longitudinal profiles of
the intermittency factor at the
source height for different source
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5.3 Intermittency Factor

To further investigate the role of the large-scale meandering motion on the concentration
fluctuation, we focus on the intermittency factor γc of the concentration signals. This is
defined as the percentage of time for which the plume is experienced at a given point, i.e. the
probability that at a position x and time t the concentration c is non-zero,

γc(x, t) = prob{c(x, t) > 0}. (21)

A reliable determination of the intermittency depends on thefine-scale structure of turbulence,
whose temporal and spatial resolutions are invariably accompanied by random instrumental
noise, whose amplitude depends also on the setting of the gain with which the fluctuations
of the measured signal are amplified. Given these limitations due to the instrumentation, in
order to quantify γc we fixed a threshold value of non-dimensional concentration, referred
to as �t , so that

γc(x, t) = prob{c∗(x, t) > �t}. (22)

Since the need for this threshold is due to the measurement errors affecting the zero concen-
tration values, �t has to be a small constant value independent of the downwind distance.
For all stations, �t = 1 was chosen, an arbitrary value that allowed us to efficiently distin-
guish the moments when the plume is experienced by the probe and the moments of zero
concentration.

Profiles of intermittency factor at the plume centreline are plotted in Fig. 12 and show that
the emission conditions have an important influence on the intermittency. The channeling of
the plume, produced by the isokinetic condition at the source, results in a reducedmeandering
and therefore in a lower intermittency of the signal (and γc values closer to unity). If the tracer
is released hypokinetically, the plume is easily captured by the ambient eddies, which engulf
the plume in a meandering motion resulting in a higher intermittency of the signal. This
effect can be further amplified by the action of the unsteady wake of the source, whose effect
extends up to several tens of source diameters (Nironi 2013). As already observed in Sect. 5.2,
in both cases—hypokinetic and isokinetic conditions—the higher the source, the greater the
influence of the emission velocity on the concentration field.

The ground-level emission is less intermittent than the elevated ones and γc attains unity as
x/δ ≥ 2.5. It can be noted that, independently of the source configuration, the intermittency
factor approaches unity when the plumes reach the ground and are efficiently mixed by the
small-scale surface-generated turbulence that acts by suppressing concentration fluctuations.
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Fig. 13 a Skewness against intensity, b Kurtosis against skewness. The relations Sk = a1 (ic)a2 and Ku =
b1 (Sk)b2 + b3 are fitted to the data using least squares

5.4 Higher Order Moments and Concentration PDFs

With the aim of seeking a suitable model for the concentration PDF, and defining its depen-
dence on the distance from the source and the emission conditions, following Mole and
Clarke (1995), we began by verifying the consistency of our dataset with simple functional
dependencies between moments of the concentration PDF of the form

Sk = a1 (ic)
a2 , (23)

Ku = b1 (Sk)b2 + b3, (24)

where ic = σc/c is the intensity of the concentration fluctuations, Sk = m∗3
3c

σ ∗3
c

is the skewness,

Ku = m∗4
4c

σ ∗4
c

is the kurtosis and a1, a2, b1, b2, and b3 are free parameters. These latter were

determined by fitting Eqs. 23 and 24 to the data (Fig. 13). This preliminary analysis showed
two main features: firstly, the values of the parameters did not show any clear dependence on
the source dimension, elevation and emission velocity. Secondly, the values of the parameters
provided by the best fit a1 = 2.01, a2 = 0.98, b1 = 1.67, b2 = 1.97, and b3 = 2.99 were in
excellent agreement with the relations Sk = 2 ic and Ku = 1.5 Sk2 + 3 that correspond to
a Gamma distribution of the form

p(χ) = kk

�(k)
χk−1 exp(−kχ), (25)

with �(k) the Gamma function, k = i−2
c and χ ≡ c/c (c being the sample space variable

and c the mean value). These findings clearly support the existence of a universal function
for the PDF of the concentration that can be suitably modelled by a family of one-parameter
Gamma distributions (Villermaux and Duplat 2003; Duplat and Villermaux 2008; Yee and
Skvortsov 2011).

PDFs measured on the plume centreline at various distances from the source location are
plotted in Fig. 14, enlightening their link to the intensity of the concentration fluctuations ic
(Fig. 14a). The Gamma distribution (Eq. 25) is rather efficient in reproducing the changing in
the shape of the PDF while increasing the distance from the source: from an exponential-like
distribution in the near field, a log-normal-like distribution with short tail in the intermediate
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field and a Gaussian-like distribution in the far field. It is worth noting that, mathematically,
these transitions are fully regulated by the value of ic only, and specifically to its value
relative to unity. Physically, these transitions can be fully interpreted by an analysis of the
intermittency factors γc.

In the near field, the plume exhibits large-scale fluctuations due to its meandering motions
that result in high intermittency of the signals, i.e. low γc, and values of ic > 1 (Fig. 14b). The
maximal value of ic, and its location with respect to the source, depend on hs/δ and σ0/δ. As
the meandering motion is damped, due to the progressive growth of the instantaneous plume
caused by relative dispersion, the intermittency is reduced (γc increases) and ic decreases to
reach unity (Fig. 14c), with a rate that is again significantly dependent on hs/δ and σ0/δ. From
hereafter, meandering is suppressed and relative dispersion becomes the only mechanism
controlling the turbulent transfer. The intermittency factor γc tends asymptotically to unity
and ic falls below one (Fig. 14d). In the very far field, as ic tend to its asymptotic value ≈0.4,
the concentration PDF tends to an invariant form, which approaches a clipped-Gaussian
(Fig. 14e).

5.4.1 Third- and Fourth-Order Moments

In the light of the previous discussion on the form of the concentration PDF, we finally
turn to the third and fourth moments of concentration. Transversal profiles of the third and
fourth moments downwind from the source are presented in Fig. 15a, c, e, and in 16a, c, e
for the transversal profiles, while the vertical profiles are shown in Figs. 15b, d, f, and in
16b, d, f. Third-order and fourth-order moments are shown to be very sensitive to both the
source size and the source elevation. As observed for σ ∗

c , the smaller source generates higher
moments, due to the enhanced role of the meandering in the near field. Moving downwind,
the difference between the concentration field generated by the two releases is progressively
reduced (Figs. 15a, c, e, 16a, c, e) and consequently the profiles gradually approach one to
the other and finally collapse at x/δ = 3.75.

It is remarkable how a small difference in the source size, whose diameter varied by a
factor of 2 (from 3 to 6 mm), is reflected in significant variations of higher-order moments of
the concentration fluctuations, which persist up to a distance of about 3 m, i.e. in the range
500σ0 < x < 1000σ0.

The source elevation is even more determinant in shaping the moment profiles. While
profiles from the ES emission have a Gaussian shape, in the LLS plume the shape changes
quickly in the downwind direction. At x/δ = 1.25 the profiles are already characterized by a
plateau at the plume centre. Further away from the source (from x/δ = 3.75), as the values of
bothm∗

3c andm
∗
4c become almost two orders of magnitude smaller than that in the near field,

their profiles exhibit off-centreline peaks, showing how the intermittency is progressively
reduced in the core of the plume, as the pollutant is well mixed. The third moment is the
most affected by off-centreline peaks, which however appear also on m∗

4c profiles. Finally,
we note how the plots for m∗

3c and m
∗
4c show generally more scatter in the profiles compared

to those of lower order moments. This is due to the undesired spikes recorded in the signals
due to aerosol sampling, whose effect becomes evident as the order of the moments of the
concentration PDF increases (Sect. 3.3).

Finally, we discuss the reliability of the estimates of higher order moments evaluated
adopting the model provided by a simple Gamma distribution (Eq. 25) and using the experi-
mental estimates of the concentration fluctuations ic. Predictions ofm∗

3c andm
∗
4c as estimated

fromEq. 25, i.e.m∗
3c� =

(
2√
k

)1/3
σ ∗
c andm∗

4c� = ( 6
k + 3

)1/4
σ ∗
c , turn out to be very accurate
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Fig. 15 Transversal profiles (at the source height) and vertical profiles (at the plume centre) of m∗
3c for the

ES and LLS, at various distances downwind: a and b x/δ = 0.625, c and d x/δ = 1.25, e and f x/δ = 3.75

close to the source (see Figs. 15a–d, 16a–d). Conversely, in the far field (Figs. 15e, f, 16e,
f), we observe discrepancies between the Gamma distribution predictions and experiments.
At the plume core, for the ES case, m∗

3c� and m∗
4c� tend to underestimate experimental data,

especially the fourth-order moments, whereas the estimates of m∗
3c still present a good accu-

racy. These discrepancies are particularly evident in the far field for the LLS case, where the
third-order and fourth-order moments exhibit off-centreline peaks and the Gamma distribu-
tion provides a substantial overestimate of the experimental data. A possible explanation of
this lost of accuracy is that in the far field the concentration PDF (at the plume centreline) of
the LLS relaxes towards a normal distribution (Fig. 14e) and then Eq. 25 provides solutions
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Fig. 16 Transversal profiles (at the source height) and vertical profiles (at the plume centre) of m∗
4c for the

ES and LLS, at various distances downwind: a and b x/δ = 0.625, c and d x/δ = 1.25, e and f x/δ = 3.75

that are less reliable. However, these comparisons clearly show that a simple Gamma PDF
can be assumed as a suitable model to compute the high order moments in the whole domain.

6 Conclusions

We have investigated experimentally the dispersion of a passive scalar emitted within a
turbulent boundary layer from a localized source with varying configurations. With the aim
of extending the work of Fackrell and Robins (1982a) on concentration fluctuations, we
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characterized the spatial evolution of the concentration statistics with a focus of the first
four moments of the concentration PDF. The experimental results also include a detailed
description of the structure of the turbulent boundary layer within which the dispersion
process takes place, which is shown to be similar to that reproduced by Fackrell and Robins
(1982a) in their experiments. The investigation of the velocity field is performed by analyzing
the vertical profiles of one- and two-point velocity statistics. In particular, the latter allowed us
to provide a direct estimate of the integral length scales of the flow. These were subsequently
used to infer the characteristic integral time scale, which represents a key parameter for the
modelling of atmospheric pollutant dispersion.

We discussed the influence of the source configuration on the dispersion by analyzing three
main aspects: the source elevation, the source size and the gas emission velocity. Our results
show that the source size and elevation have a major influence on the spatial distribution
of the higher moments of the concentration PDF. This can be explained by an interaction
of the plume during its initial stage of growth with the different scales of motion in the
surrounding atmospheric flow. These effects are more and more evident as the moments of
the PDF increase, and persist over a distance that is almost three orders of magnitude larger
than the source size.

The production of turbulent fluctuations occurs in a region very close to the source, and
is therefore likely to be highly influenced by the emission condition and the design of the
source. The variation of the emission conditions at the source from isokinetic to hypokinetic
can affect the concentration field over a distance of a few tens of source diameters, therefore
lower than that in the case of a varying diameter. Decreasing the velocity of the emission
results in a reduced effective source size, which implies an increased intermittency of the
plume.

Our experimental data generally confirm the results of Fackrell and Robins (1982a) on the
effects of source size and elevation on the concentration field. Considering an elevated source,
the spatial distribution of the mean concentrations agrees very well with their data, whereas
discrepancies are observed in the longitudinal profiles of the intensity of the concentration
fluctuations. The reasons for these differences are not fully clear. It is suggested that these
may be related to the influence of a slightly different source design on the plume dynamics
in its initial phase of growth.

Finally, the experimental non-dimensional PDF is shown to be very well modelled by a
Gamma distribution for any of the source configuration considered, irrespective of the source
conditions. This implies that the higher order concentration moments can be fully expressed
as a function of only one parameter, the intensity of the concentration fluctuation ic = σc/c.
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Abstract We investigate the reliability of a meandering plume model in reproducing the
passive scalar concentration statistics due to a continuous release in a turbulent boundary
layer. More specifically, we aim to verify the physical consistency of the parametrizations
adopted in the model through a systematic comparison with experimental data. In order to
perform this verification, we take advantage of the velocity and concentration measurements
presented in part I of the present study (Nironi et al., Boundary-Layer Meteorol, 2015)
particularly concerning estimates of the Eulerian integral length scales and the higher order
moments of the concentration probability density function. The study is completed by a
sensitivity analysis in order to estimate the effects of the variations of the key parameter to
the model results. In the light of these results, we discuss the benefits and shortcomings of
this modelling approach and its suitability for operational purposes.

Keywords Atmospheric turbulence · Concentration · Fluctuating plume · Meandering ·
Pollutant dispersion · Probability density function · Relative dispersion

1 Introduction

Fluctuating plume dispersion models are conceived to estimate the concentration statistics
of a pollutant dispersing within a turbulent flow. Compared to other modelling approaches,
such as micro-mixing Lagrangian models (Sawford 2004; Cassiani et al. 2005; Leuzzi et al.
2012; Amicarelli et al. 2012; Cassiani 2013) and large-eddy simulations (Xie et al. 2004;
Vinkovic et al. 2006), their relatively simple formulation makes them suitable for operational
purposes.
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The basic principle of this modelling approach (Gifford 1959) is to split the total plume
dispersion into two components: meandering and relative dispersion. The first mechanism
describes the fluctuation of the plume centroid, whereas the relative dispersion drives the
spreading of a plume element around its centre of mass. The two mechanisms can be treated
as independent, as long as it is assumed that they are related to spatial scales separated by
several orders of magnitude. As pointed out by Yee et al. (1994), and as discussed later, this
hypothesis is strictly valid only close to the source or in the far field. In between there does not
exist a clear spectral gap between the scales of motion contributing to the plume meandering
and those associated with the relative dispersion. Despite this theoretical weakness, this
modelling approach was shown to be quite robust in simulating the dispersion of a passive
scalar in a variety of turbulent flows (Fackrell and Robins 1982; Sawford and Stapountzis
1986; Yee et al. 1994; Franzese 2003).

Adopting this assumption, the concentration probability density function (PDF), p, can
be written as the convolution of the PDF of the location of the cloud instantaneous centroid,
pm , characterizing the large-scale random crosswind displacements of the centre of mass,
and the PDF of the concentration in the meandering reference scheme (ym, zm), pcr ,

p(c; x, y, z) =
∫ ∞

0

∫ ∞

−∞
pcr (c; x, y, z, ym , zm) pm(x, ym, zm)dymdzm, (1)

where c is the instantaneous concentration. Once p is known, the moments of the concentra-
tion can be computed as,

cn(x, y, z) =
∫ ∞

0
cn p(c; x, y, z)dc. (2)

The practice of partitioning the concentration fluctuations depending on the their character-
istic length scales was originally introduced by Gifford (1959). He proposed a model for
dispersion in isotropic and homogeneous turbulence, neglecting the role of internal concen-
tration fluctuations, so that pcr was parametrized by the Dirac delta function δD ,

pcr (c; x, y, z, ym, zm) = δD {c − cr (x, y, z, ym, zm)} , (3)

where cr is the mean concentration relative to the instantaneous plume centroid. The assump-
tion of negligible internal fluctuations is reliable for short times, so far as meandering is the
mechanism governing the dispersion process. It becomes unrealistic in the far field, where
the role of relative dispersion overcomes that of meandering.

This relatively simplemodelwas shown to reliably predict themain features characterizing
the near-field dynamics of a fluctuating plume emitted from an elevated source. Fackrell
and Robins (1982) simulated the effect of a varying source size on the intensity of the
concentration fluctuation in an anisotropic and non-homogeneous velocity field. According
to their analysis, this can be attributed to the different role of the meandering motion, whose
intensity increases as the source size decreases, since the range of scales of the turbulent
motion, that are responsible for displacing the plume centre of mass, widens. The model is
also able to distinguish between the different shapes that the concentration PDF assumes
according to the type of source (Sawford and Stapountzis 1986), predicting a unimodal PDF
for the point source and a bimodal PDF for the line source, in agreement with experimental
observations.

The role of the relative in-plume fluctuations was firstly taken into account by Yee et al.
(1994) who introduced the intensity of the relative concentration fluctuations icr as a new
parameter, defined as the ratio between the standard deviation of the mean relative concen-
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tration, σcr , and cr . The overall statistics of the relative dispersion were then parametrized
by means of a Gamma distribution,

pcr (c; x, y, z, ym , zm) = λλ

cr�(λ)

(
c

cr

)λ−1

exp

(
−λc

cr

)
, (4)

where �(λ) is the gamma function and λ = 1/ i2cr . A one-dimensional formulation of the
model was tested against in situ measurements of concentrations (Yee et al. 1994) at different
heights above the ground within an atmospheric boundary layer over a uniform flat terrain.
A two-dimensional formulation of the model for homogeneous and isotropic turbulence
was tested by Yee and Wilson (2000) against water-plume measurements of the first four
moments of the concentration PDF of a passive scalar dispersing in grid turbulence. In
order to reliably model the anisotropy and the inhomogeneity of the velocity field within a
turbulent boundary layer, several authors (Reynolds 2000; Luhar et al. 2000; Franzese 2003;
Mortarini et al. 2009) have reconstructed the spatial evolution of the vertical component
of the plume centroid PDF, pzm , by means of stochastic Lagrangian models simulating the
trajectories of the puff centre of mass. Cassiani and Giostra (2002) have also developed a
generalized approach that allows pzm to be computed by means of a mean concentration
field, without the need for a Lagrangian particle model. All the above-mentioned models
include a simple formulation of icr that is assumed to depend on the longitudinal coordinate
only. More complex parametrizations of icr have been proposed only recently. Gailis et al.
(2007) introduced a three-dimensional model of icr to predict the concentration PDF within
a dispersion plume in a group of obstacles. This same parametrization was used by Ferrero
et al. (2013) to compute the concentration statistics of two reactive chemical species within
a convective boundary layer.

In this paper, we present a formulation of the fluctuating plume model (Sect. 2) and
discuss the parametrizations that render the model suitable for simulating the dispersion
process within a turbulent neutral boundary layer (Sect. 3). In particular, we aim to analyze
the consistency of these parametrizations in the light of the experimental characterization of
the velocity field performed by Nironi et al. (2015), especially concerning the estimates of
the Eulerian integral length scales (Sect. 3.1). Subsequently, the focus is on icr (Sect. 3.2) that
is modelled adopting two different parametrizations. Assuming icr = icr (x) (Sect. 3.2.1),
the formulation of the meandering model leads to an analytical solution for p(c; x, y, z),
whereas assuming icr = icr (x, y, z) (Sect. 3.2.2) leads to a semi-analytical solution. Both
formulations are compared to the experimental wind-tunnel results of Nironi et al. (2015),
providing a unique dataset concerning the spatial distribution of the first four moments of the
concentration PDF (Sect. 4). Finally we perform an error and sensitivity analysis of several
key parameters (Sect. 5) to determine the robustness and accuracy of the model and discuss
its advantages and shortcomings, as well as its suitability for operational purposes (Sect. 6).

2 Meandering Plume Model

We consider a source of diameter σ0 located at coordinates (0, ys, zs) within a turbulent
boundary layer of depth δ. Following Yee and Wilson (2000) and Luhar et al. (2000) we
assume the statistical independence of the plume meandering in the lateral and vertical
directions, so that pm can be expressed as the product of two components, pym and pzm ,

pm(x, ym, zm) = pym(x, ym)pzm(x, zm). (5)
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We stress here that this assumption is not supported by any theoretical consideration, but is
rather justified by the need for simplicity in the formulation of the model.

Since the velocity statistics are assumed to be homogeneous in the horizontal planes, the
crosswind distribution of the centroid locations is Gaussian,

pym(x, ym) = 1√
2πσym

exp

(
− (ym − ys)2

2σ 2
ym

)
, (6)

where σym is the centroid horizontal spread.
Conversely, pzm requires a slightly more complex formulation in order to account for the

effects of ground reflection and the non-homogeneity of the velocity statistics in the vertical
direction. This is modelled by means of the following reflected Gaussian distribution (Arya
1999),

pzm(x, zm) = 1√
2πσzm

{
exp

[
− (zm − zs)2

2σ 2
zm

]
+ exp

[
− (zm + zs)2

2σ 2
zm

]}
, (7)

where σzm is the vertical spread of the plume centroid. In the presence of one boundary, a
reflected Gaussian ensures a constant mass flux

∫∞
0 pzmdzm = 1 through any vertical section

perpendicular to the wind direction, a constraint that is not satisfied by a simple Gaussian
model far from the source, which gives

1√
2πσzm

∫ ∞

0
exp

(
− (zm − zs)2

2σ 2
zm

)
dzm = 1

2

(
1 + erf

(
zs√
2σzm

))
≤ 1. (8)

Note that different atmospheric stability conditions can alter significantly the shape of pzm .
For a detailed discussion on this topic, see Luhar et al. (2000) and Franzese (2003).

Similarly, to account for the anisotropy of the relative dispersion, we parametrize the
relative mean concentration cr as

cr = Mq

um
pyr (x, y, ym) pzr (x, z, zm), (9)

where Mq is the mass flow rate and um = u(zm) is the mean cloud advection velocity.
This parameter, as well as all other velocity statistics—mean velocity, velocity variances and
turbulent kinetic energy (TKE) dissipation rate—used in the model, is evaluated at the plume
centroid zm(x) and therefore depends solely on the downwind distance from the source. The
implications of this assumption on the results are discussed in Sect. 5.2. The functions pyr
and pzr are the lateral and vertical distributions of the mean concentration around the plume
centroid and are modelled as,

pyr = 1√
2πσyr

exp

(
− (y − ym)2

2σ 2
yr

)
, (10)

pzr = 1√
2πσzr

{
exp

(
− (z − zm)2

2σ 2
zr

)
+ exp

(
− (z + zm)2

2σ 2
zr

)}
, (11)

where σyr and σzr are the relative plume spreads around the plume’s centre of mass in the
horizontal and vertical directions, respectively.
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Substituting Eqs. 4, 6, 7 and 9 into Eq. 2 and solving the integral in the variable c, we
obtain the n-th concentration moment as function of the position in space (x, y, z),

cn(x, y, z) =
∫ ∞

0
pzm dzm

∫ ∞

−∞
pym dym

∫ ∞

0
cn pcr (c; x, y, z, ym , zm) dc

=
∫ ∞

0
pzm dzm

∫ ∞

−∞
1

λn

�(n + λ)

�(λ)
cnr pym dym

=
(

Mq

2πσyrσzr um

)n 1

2πσymσzm

×
∫ ∞

−∞
exp

(
− (ym − ys)2

2σ 2
ym

)
exp

(
−n (y − ym)2

2σ 2
yr

)
dym

×
∫ ∞

0

1

λn

�(n + λ)

�(λ)

{
exp

(
− (zm − zs)2

2σ 2
zm

)
+ exp

(
− (zm + zs)2

2σ 2
zm

)}

×
{
exp

(
− (z − zm)2

2σ 2
zr

)
+ exp

(
− (z + zm)2

2σ 2
zr

)}n
dzm . (12)

In Sect. 3.2 we provide analytical and semi-analytical solutions of Eq. 12, depending on the
formulation of λ = 1/ i2cr .

3 Set of Model Parameters

In order to have a complete formulation of the model, we need to parametrize σy , σyr , σym ,
σz , σzr , σzm , and icr . To this end, we take advantage of the information provided by the
experimental investigation of the velocity and concentration field presented in Nironi et al.
(2015). The analysis is performed for the emissions released from three different sources of
varying size σ0/δ and elevation zs/δ (see Table 1).

3.1 Parametrization of the Plume Spreads

The global plume spreads are related to the spread of the plume centroid and to the relative
spread by the following relations (Gifford 1959),

σ 2
y = σ 2

ym + σ 2
yr , (13)

σ 2
z = σ 2

zm + σ 2
zr . (14)

There are therefore two independent plume spread parameters that have to be set. Following
Luhar et al. (2000) and Franzese (2003) we model the global spreads σy and σz , the relative
spreads σyr and σzr , and then obtain σym and σzm by means of Eqs. 13 and 14.

Table 1 Diameter σ0 and height
zs of the three sources

σ0/δ zs/δ

Elevated Source ES 3 0.00375 0.19

Elevated Source ES 6 0.0075 0.19

Low-Level Source LLS 0.00375 0.06
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The global spreads are parametrized according to Taylor’s statistical theory as Nironi et al.
(2015),

σ 2
y = σ 2

0

6
+ 2σ 2

v TLv

{
t − TLv

[
1 − exp

(
− t

TLv

)]}
, (15)

σ 2
z = σ 2

0

6
+ 2σ 2

wTLw

{
t − TLw

[
1 − exp

(
− t

TLw

)]}
, (16)

where σv and σw are the standard deviations of the transverse and vertical velocity com-
ponent, TLv and TLw are Lagrangian time scales, and t = x/um is the flight time. As is

customary (Tennekes 1982), the Lagrangian time scales are parametrized as TLv = 2σ 2
v

C0ε
and

TLw = 2σ 2
w

C0ε
, where C0 is the Kolmogorov constant assumed here equal to 4.5 (Nironi et al.

2015), and ε is the mean dissipation rate of the TKE.
The parametrization of the relative dispersion coefficients, σyr and σzr , has to satisfy two

asymptotic conditions (for brevity we report only those of σyr , since the same conditions are
imposed on σzr , see Franzese 2003; Franzese and Cassiani 2007),

t → 0 σ 2
yr = (Cr/6)ε (ts + t)3, (17)

t → ∞ σ 2
yr → σ 2

y = 2σ 2
v TLv t, (18)

where Cr is the Richardson–Obukhov constant and ts = [σ 2
0 /(Crε)

]1/3
represents the flight

time needed by a plume emitted from a virtual point source to expand to the size σ0.
Equation 17 follows from the Richardson–Obukhov law for a finite source size (Ott and

Mann 2000; Franzese and Cassiani 2007) and models the cloud spreading as a function of the
flight time t (Richardson 1926) and ε (Obukhov 1941). Equation 18 is the Taylor’s limit for
large dispersion time, which applies to σyr (and σzr ) when the meandering process becomes
negligible and the relative dispersion approaches the global dispersion. The objective is to
define a suitable transition between the two asymptotic behaviours. To that purpose we adopt
an approach similar to that proposed by Luhar et al. (2000) and Franzese (2003). In contrast
to them, we introduce the time scales Tmy and Tmz . These are needed in order to ensure that
the transition from the inertial scaling to the diffusive asymptotic scaling is consistent with
the main characteristics of the large-scale dynamics of the velocity field, presented in Nironi
et al. (2015). The evolutions of σ 2

yr and σ 2
zr are then modelled as

σ 2
yr = (Cr/6)ε (ts + t)3{

1 + [(Cr/6)εt2/
(
2σ 2

v TLv

)]2/5}5/2 exp

[
−
(

t

Tmy

)2]

+ σ 2
y

{
1 − exp

[
−
(

t

Tmy

)2]}
, (19)

σ 2
zr = (Cr/6)ε (ts + t)3{

1 + [(Cr/6)εt2/
(
2σ 2

wTLw

)]2/5}5/2 exp

[
−
(

t

Tmz

)2]

+ σ 2
z

{
1 − exp

[
−
(

t

Tmz

)2]}
, (20)

so that the spatial evolutions of σyr and σzr are therefore a function of the parameters Tmy ,
Tmz and Cr , whose setting is discussed in the following paragraphs.
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Fig. 1 Modelled transverse and vertical dispersion coefficients varying αT (C0 = 4.5 andCr = 0.8): a, b ES
3 source; c, d LLS source. Solid line αT = 1, dash line αT = 2, dash-dot line αT = 3. The black-dotted lines
represent reference values of the Eulerian integral length scales Lvv and Lww at source height, as estimated
by Nironi et al. (2015)

3.1.1 The Time Scales Tmy and Tmz

The time scales Tmy and Tmz can be thought of as thresholds beyondwhich relative dispersion
becomes the prevalent mechanism. This occurs when the size of the relative plume exceeds
that of the largest scale eddies (L), so that the contribution of the TKE to the fluctuations of
the cloud centroid becomes negligible. It is questionable if the quantityL refers to Lagrangian
statistics, as proposed by Franzese and Cassiani (2007), or to Eulerian statistics. The latter
are adopted here, since we dispose of the direct measurements of the Eulerian integral length
scales Lvv and Lww (Nironi et al. 2015).

Both Tmy and Tmz are assumed to be proportional to the Lagrangian time scales, Tmy =
αT yTLv and Tmz = αT zTLw . In order to define the value of the proportionality coefficients
αT y and αT z , we analyze the evolution of σyr and σzr , as given by Eqs. 19 and 20, and we
compare it with the experimental estimates of Lvv and Lww evaluated at source height zs . In
doing that, we fix the value of the Richardson–Obukhov constant Cr = 0.8 (the sensitivity
to Cr is discussed in Sect. 3.1.2). The evolution of σyr and σzr , as well as that of σym and
σzm , is plotted in Fig. 1 for varying values of αT y = αT z = 1, 2, 3. As expected, the plot
shows that the behaviour of the dispersion coefficients depends on the source elevation. In
particular the spreads due to the centre of mass, σym and σzm , for the elevated source ES (Fig.
1a, b) are larger than those of the low-level source LLS (Fig. 1c, d). This can be explained
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by two features. Firstly, in the lower part of the boundary layer the size of the most energetic
eddies is smaller and, as a consequence, the effects on the dispersion due to the displacement
of the plume centroid are significantly reduced. Secondly, the effects of the ground (Luhar
et al. 2000; Franzese 2003) result in a more rapid damping of the plume meandering in the
vertical direction (Fig. 1b, d) with respect to the transverse coordinate (Fig. 1a, c).

The aim here is to define αT y and αT z so that σym and σzm do not exceed Lvv and Lww,
respectively, (Fig. 1) as σyr and σzr attain their asymptotic values. The choice of the most
appropriate αT y and αT z is somehow arbitrary. In order to constrain the degree of freedom
of the model in the parameter space, we impose αT y = αT z = αT , a condition that may
not be appropriate for any source configurations (as a crosswind line source). Adopting
these criteria yields αT = 2. It is worth noting that, in the present case study, the original
formulation proposed by Luhar et al. (2000) and Franzese (2003), i.e. without the corrective
terms involving Tmy and Tmz in Eqs. 19 and 20, leads to a slower increase of σyr and σzr
with the distance from the source, implying an unphysical growth of σym and σzm to values
exceeding the Eulerian scales. Finally, we point out that the characteristic length scales of the
meandering and relative dispersion processes are well-separated only very close to the source
and in the far field (where σmy, σmz → 0). However, as expected (Fig. 1), this hypothesis is
not verified in an intermediate region that actually covers most of the investigated domain,
both for the ES and LLS cases.

3.1.2 Richardson–Obukhov Constant Cr

Values of Cr are affected by a significant uncertainty. In homogeneous and isotropic turbu-
lence, estimates obtained with direct numerical simulations are approximately in the range
0.4 < Cr < 0.8 (Ishihara andKaneda 2002; Boffetta and Sokolov 2002; Biferale et al. 2005),
and in non-homogeneous and anisotropic turbulence the range is further widened. Franzese
(2003) adopted Cr = 1.4 in a convective boundary layer whereas Mortarini et al. (2009)
assumed Cr = 0.06 in a plant canopy.

In order to emphasize the influence on themodel due to the Richardson–Obukhov constant
variations, in Fig. 2 we plot σym

σy
, σzm

σz
, σyr

σy
, and σzr

σz
as a function of the downwind distance

from the source, for values of Cr spanning a range consistent with the literature data, i.e.
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Fig. 2 a σyr /σy , σym/σy , and b σzr /σz , σzm/σz vs x/δ for ES 3 varying Cr = 0.4, 0.8, 1.2 (C0 = 4.5 and
αT = 2); solid line Cr = 0.4, dash line Cr = 0.8, dash-dot line Cr = 1.2
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Cr = 0.4−1.2. The effects of the variations ofCr are significantly reduced compared to those
of αT , plotted in Fig. 1. Nevertheless, the influence ofCr is non-negligible in an intermediate
region (see Fig. 2), from x/δ ≈ 0.2 up to x/δ ≈ 1.5, within which it can appreciably affect
the model results. According to Franzese and Cassiani (2007), the quantity Cr/C0 should be
fixed and equal to 1/11. Since we adopted C0 = 4.5 this leads to Cr ≈ 0.4. However, for
reasons that will be made clear in the next paragraph (Sect. 3.2), this value was not consistent
with the formulation of themodel for icr .We have therefore assumedCr = 0.8which implies
a ratio Cr/C0 ≈ 0.17. Note however that this value is quite close to the theoretical value
suggested by Franzese and Cassiani (2007) compared to those presented in previous studies
(Franzese 2003 imposed Cr/C0 ≈ 0.5 and Mortarini et al. 2009 assumed Cr/C0 ≈ 1/33).

3.2 Parametrization of the Intensity of Relative Concentration Fluctuations

The determination of the spatial evolution of the intensity of relative concentration fluctu-
ations icr is a key aspect in the formulation of the meandering models. The dependence
of this parameter on the flow dynamics and emission conditions however has been rarely
characterized either experimentally or numerically. As far as we know, the only attempt to
measure this parameter is that of Gailis et al. (2007), who studied the dispersion of a passive
scalar with optical measurement techniques within both a turbulent boundary layer and an
obstacle array. Given this lack of information, most of the meandering plume models found
in the literature (Luhar et al. 2000; Yee and Wilson 2000; Franzese 2003; Mortarini et al.
2009) adopt quite simple models for icr , which is generally assumed to be dependent on
the x-coordinate only. This assumption however can significantly deteriorate the numerical
results in the far field. As shown by Mortarini et al. (2009), to avoid this lack of accuracy of
the model it is then necessary to impose an unphysical growth of icr for increasing distance
from the source.

In what follows, we consider two different formulations of the model. In the first case we
consider icr = icr (x), in the second case icr = icr (x, y, z). Both formulations are set in order
to ensure the physical consistency of the model with respect to the evolution of the intensity
of the concentration fluctuations, ic = σc/c, determined experimentally in the wind-tunnel
experiments presented in Nironi et al. (2015).

3.2.1 1-D Model of icr

In the case of icr = icr (x), Eq. 12 can be solved analytically, leading to

cn(x, y, z) =
(

Mq

2πσyrσzr um

)n σyr(
nσ 2

ym + σ 2
yr

)0.5
σzr(

nσ 2
zm + σ 2

zr

)0.5
1

λn

�(n + λ)

�(λ)

× exp

⎡
⎣− n(y − ys)2

2
(
nσ 2

ym + σ 2
yr

)
⎤
⎦ n∑

k=0

{(
n

k

)
exp

[
− (n − k)(z − zs)2

2(nσ 2
zm + σ 2

zr )

]

× exp

[
− k(z + zs)2

2(nσ 2
zm + σ 2

zr )

]
exp

[
− (2z)2k(n − k)

2(nσ 2
zm + σ 2

zr )

σ 2
zm

σ 2
zr

]}
, (21)

where

(
n

k

)
is the binomial coefficient.
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With some algebra, Eq. 21 can be rearranged in order to illustrate the relation between icr
and ic on the plume centreline (y = ys, z = zs),

i2cr = (i2c + 1
)
Fc − 1, (22a)

Fc =
σyr

√
2σ 2

ym + σ 2
yr

σ 2
y

σzr

√
2σ 2

zm + σ 2
zr

σ 2
z

×
{
1 + 2 exp

(
− 2(zs)2

(2σ 2
zm + σ 2

zr )

)
exp

(
− 2(zs)2

(2σ 2
zm + σ 2

zr )

σ 2
zm

σ 2
zr

)

+ exp

(
− 4(zs)2

(2σ 2
zm + σ 2

zr )

)}−1 {
1 + exp

(
−2(zs)2

σ 2
z

)}2
, (22b)

where the evolution of Fc is fully determined by the parametrization (Sect. 3.1) of the plume
spreads (total, relative and centroid position). For all release conditions ic is larger than icr
close to the release point, where the meandering process is significant both for the ES and
LLS cases. Moving away from the source, the relative dispersion becomes the prevalent
mechanism and icr → ic.

As Eq. 22b clearly shows, the model of icr depends on the distribution of ic, which
therefore requires an independent estimate. To overcome this problem, Yee et al. (1994)
and Yee and Wilson (2000) have set icr by fitting models of the form of Eq. 22b to the
experimental estimates of ic. Following this same approach, we then turn to the experimental
values of ic(x, ys, zs) collected by Nironi et al. (2015). By substituting these data in Eq. 22b
we determined icr at six different distances from the source. Since two asymptotic bounds
have to be satisfied at source location (x → 0) and in the very far field (x → ∞), the
following rational curve was used to fit the icr estimates,

icr → 0 at
x

δ
→ 0, (23a)

icr → ic = σc

c
�= 0 at

x

δ
→ ∞, (23b)

icr = xad
p1x2ad + p2xad + p3

x3ad + q1x2ad + q2xad + q3
, (23c)

where xad = x/δ. The values of the parameters in Eq. 23c for the three cases considered are
computed with the method of least-squares and are summarized in Table 2.

As discussed in Sect. 3.1.2, the values of icr close to the source depend significantly on the
choice ofCr (with variations of order 30%). In particular, forCr = 0.4, we found unphysical
negative values of icr . We have therefore excluded this value, even though it is supported by
the theoretical analysis proposed by Franzese and Cassiani (2007), and adopted Cr = 0.8
instead.

Figure 3 shows a comparison at increasing distances from the source between the experi-
mental values of ic, measured on the plume centreline, and the values of icr computed through

Table 2 Coefficients used in
Eq. 23c to calculate icr

p1 p2 p3 q1 q2 q3

ES 3 0.35 −1.30 24.54 1.74 −0.58 9.95

ES 6 0.35 0.56 38.64 8.47 −8.70 25.18

LLS 0.35 −0.65 5.97 2.50 −0.55 1.20
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Fig. 3 Experimental values of ic (symbols) and icr computed through Eq. 23c (lines) vs x/δ at the plume
centreline: a ES 3, b ES 6, c LLS

Eq. 23c. In both ES and LLS cases, icr exhibits an initial growth and thereafter decreases
monotonically to an asymptotic value, which is reached far from the source. As the mean-
dering motion weakens, icr correctly approaches ic. In the ES case the meandering influence
disappears later (x/δ ≈ 2, Fig. 3a, b) in accordance with the model of σym and σzm (Fig.
1). Conversely, in the LLS case the fluctuation of the plume centre of mass is damped very
rapidly by the presence of the ground and icr → ic at x/δ ≈ 1 (Fig. 3c). In both cases,
the model leads to the same asymptotic value of the relative concentration fluctuations (at
x/δ → ∞, icr → 0.35).

It is worth mentioning that as icr → ic the intermittency in the core of the plume is
suppressed. Note that according to the analysis performed in Sect. 5.3 and Sect. 5.4 in Nironi
et al. (2015), this actually takes place at distances (x/δ ≈ 3.75 for the ES) that are larger than
those predicted by the present model (x/δ ≈ 2.5 for the ES, see Fig. 3a, b). In this sense, the
model is not fully consistent with the experimental data in this intermediate region between
the near and the far field.

As shown in Fig. 3, the model reproduces a dependence of icr on the source size and
elevation. The dependence on zs is due to the inhomogeneity of the velocity field, whereas
the influence of σ0 is not easily explained. According to this model, the increased intensity ic
observed for the smaller source size is due partially to the increased intensity of the meander-
ing motion and partially to an increased intensity of the relative concentration fluctuations.
It is questionable if this trend represents the real physics of the phenomenon or if it has to
be attributed to a fictitious effect related to the formulation of the model. The answer to this
question, however, can be given only through a direct estimate of icr bymeans of experiments
or direct numerical simulations.

3.2.2 3-D Model of icr

By means of experimental measurements, Gailis et al. (2007) showed that the lateral and
vertical profiles of icr exhibit large variations on the y–z plane. Based on thesemeasurements,
they proposed to parametrize icr as a function of the mean relative concentration cr ,

i2cr (x, y, z) = [1 + i2cr0(x)]
[

cr (x, y, z)

cr (x, ym, zm)

]−ζ(x)

− 1, (24)

where, for each transverse section corresponding to a given distance x , icr0 is the minimum
of icr , ζ is a shape parameter depending on the longitudinal coordinate and cr (x, ym, zm)

is the mean relative concentration evaluated at the instantaneous plume centroid. The same
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Fig. 4 a Self-similarity of the vertical profiles of ic in the far field, experimental data for the LLS from Nironi
et al. (2015); b shape parameters ζy and ζz vs x/δ

parametrizationwas assumedbyFerrero et al. (2013) in a convective boundary layer.Weadopt
here a similar formulation, which we slightly modify by introducing two shape parameters,
ζy and ζz , to take into account the effects of anisotropy in the y and z directions,

i2cr = (1 + i2cr0)

{
exp

(
− (y − ym)2

2σ 2
yr

)}−ζy

×
{
exp

(
− (z − zm)2

2σ 2
zr

)
+ exp

(
− (z + zm)2

2σ 2
zr

)}−ζz

×
{
1 + exp

(
− (2zm)2

2σ 2
zr

)}ζz

− 1, (25)

where the longitudinal evolution of icr0 remains the same as that defined in the previous
paragraph (Sect. 3.2.1).

The evolution of the shape parameters ζy and ζz with x has been modelled in order to
ensure consistency with the main feature characterizing the plume relative dispersion. Close
to the source the size of the cloud relative to the plume centroid, σyr and σzr , is smaller than
the Eulerian integral length scale and mixing with the ambient air is due to eddies whose
size ranges from the Kolmogorov scale to that of the cloud itself. We can then expect an
efficient mixing within the core of the plume, leading to an almost uniform icr with respect
to y and z directions. Conversely, in the far field σyr and σzr approach respectively σy and σz
and exceed significantly the Eulerian integral length scale, so that mixing with ambient air
is due to eddies smaller than the plume. The intermittency of the entrainment of ambient air
within the plume produces high fluctuations of the relative concentration at the edges of the
plume, that are progressively reduced approaching the core. In this case, icr depends on y-
and z-coordinates and the form of its transverse and vertical profiles varies with downwind
distance from the source and tends to a self-similar behaviour in the far field. This tendency
can be reproduced by modelling the shape parameters with a sigmoid function, viz.

ζ = α1

α2 + exp
(−α3

x
δ

) . (26)

Close to the source location icr (x) ≈ icr0(x) and, therefore, ζy and ζz should assume
values close to zero. The values of α1 and α2 have been set in order to fit the self-similar
profile of ic observed experimentally in the LLS case (see Fig. 4a) at large distance from the
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Table 3 Sigmoid function
coefficients

LLS ES
ζy ζz ζy ζz

α1 1.43 ×10−3 0.65 3.58 ×10−3 5.0 ×10−3

α2 3.16 ×10−3 0.72 7.9 ×10−3 5.6 ×10−3

α3 9.64 5.8 1.6 1.9

Table 4 a j coefficients
evaluated through Eq. 28 for the
first four concentration moments

n a0 a1 a2 a3

1 1

2 0 1

3 0 −1 2

4 2 2 −7 6

source. The values of α3 drive the transition between the asymptotic states corresponding to
the near and far fields. The spatial extent of this transition is small for the LLS plume, since
the profiles of ic rapidly attain self-similarity, and larger for the ES plume. Therefore, moving
away from the source, ζy and ζz increase and tend to different values, giving an icr that is
shaped differently in the transverse and vertical directions. The values of the coefficients α1,
α2 and α3 adopted in our model are reported in Table 3 and the resulting downwind variations
of ζy and ζz are plotted in Fig. 4b.

Substituting Eqs. 25 and 26 in Eq. 12, we obtain an analytical solution in ym and an
integral in zm , that has to be solved numerically. The moments of the concentration are then
given by the following relation,

cn(x, y, z) =
(

Mq

2πσyrσzr um

)n ∫ ∞

0

n−1∑
j=0

{
a j

[
(i2cr0 + 1)

(
1 + exp

(
− 4z2m
2σ 2

zr

))ζz

×
(

1√
2πσzr pzr

)ζz
] j

σyr√
(n − jζy)σ 2

ym + σ 2
yr

× exp

(
− (n − jζy)(y − ys)2

2((n − jζy)σ 2
ym + σ 2

yr )

)}(√
2πσzr pzr

)n
pzm dzm (27)

where a j are the coefficients of the polynomial

P(x) =
n−1∑
j=0

a j x
j =

n∏
k=1

[(n − k)x − (n − k − 1)] (28)

computable through Vieta’s formulae. The values of the coefficients a j for the first four
concentration moments are reported in Table 4.

3.2.3 Asymptotic Behaviour

At large distance from the source (x/δ → ∞, t/TL → ∞) the relative dispersion becomes
the only mechanism characterizing the dispersion process, so that,
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Fig. 5 Experimental and modelled PDF on the mean plume centreline varying with the distance from the
source location for ES 6 at y/δ = 0, z/δ = zs/δ: a x/δ = 0.625, b x/δ = 5.0

icr → ic, (29a)

σym → 0, σyr → σy, (29b)

σzm → 0, σzr → σz . (29c)

In these conditions, the centroid PDF pm tends to a Dirac delta distribution and the PDF of the
global dispersion (p) is equal to the relative concentration PDF, that assumes the following
formulation,

pm → δD, (30)

pcr → p = λλ

c�(λ)

(c
c

)λ−1
exp

(
−λc

c

)
(31)

with λ = 1/ i2cr → 1/ i2c .
This formulation of the model is in agreement with one of the main findings of the exper-

imental investigation presented in Nironi et al. (2015), i.e. that the PDF of the concentration
can be modelled with high accuracy by a Gamma distribution.

4 Comparison with Experimental Results

We finally test the agreement of the fluctuating plume model with the wind-tunnel measure-
ments of the concentration statistics, carried out by Nironi et al. (2015). A first qualitative
analysis concerns the form of the concentration PDF at the plume centreline, presented for
both formulations of icr in Sect. 3.2. As an example, in Fig. 5 we report a comparison between
themodelled and experimental PDFs at two distances from the source. Close to the source the
meandering mechanism prevails (see Fig. 1) and the form of the PDF is similar to a negative
exponential distribution (Fig. 5a). In the far field, the meandering becomes negligible with
respect to the relative dispersion. The intermittency within the plume is damped, and the
shape of the PDF is similar to a log-normal distribution with a short tail, as shown in Fig. 5b.
In both cases the model captures the plume dynamics well and accurately reproduces the
shape of the concentration PDF.

To perform a more accurate analysis of the model reliability and to quantify the errors in
the predictions, we focus on the profiles of the first four moments around the mean, referred
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Fig. 6 ES case: concentration statistics vs x/δ at y/δ = 0, z/δ = zs/δ: a σc/c, b m3/c, c m4/c

to asmi , with i = 1, 2, 3, 4. These can be computed from Eq. 2 using the following relations
(Monin and Yaglom 1971),

m1 = c, (32a)

m2 = σ 2
c = c2 − c2, (32b)

m3 = c3 − 3c2c + 2c3, (32c)

m4 = c4 − 4c3c + 6c2c2 − 3c4. (32d)

In the analysis we apply the following normalization:

m∗
i = mi

1/ i u∞δ2

Mq
, (33)

where u∞ is the velocity at the top of the boundary layer.
It is worth noting that in what follows (as well as in the analysis presented in Sect. 5), the

computed values of the first two moments, the mean and the standard deviation, are actually
the results of a best fit of the models given by Eq. 21 and Eq. 27 (with n = 1 and n = 2) to
the experimental data, obtained by tuning the model parameters, as discussed in Sect. 3. A
real comparison between model and experiments is therefore performed only form∗

3 andm
∗
4,

whose estimates can be considered as fully independent from the experimental observations.

4.1 Elevated Source

Firstly,we analyze the longitudinal profiles of the ratio between the values of the concentration
statistics (σc,m

1/3
3 , andm1/4

4 ) and mean concentration c at source height, where the estimates
of the two models of icr do not differ one from the other. As Fig. 6 shows, the model provides
accurate estimates in the whole domain investigated here (0 ≤ x/δ ≤ 5), for the two elevated
sources considered. In particular, the model reproduces well the influence of the source size
in the near field, that progressively vanishes as the meandering motion becomes less effective
at displacing the plume centre of mass. The concentration statistics then tend to the same
asymptotic values in the far field, independently of the source conditions.

A further analysis concerns the transverse profiles of the concentration statistics at source
height. As an example we show in Fig. 7a, c, e, and g a comparison between experiments
and model predictions at x/δ = 0.625, z/δ = zs/δ. At this distance from the source, the two
formulations of the icr provide almost identical values since icr = icr0 in both cases. The
varying source diameter does not affect the profiles of mean concentration (Fig. 7a), whereas
it significantly influences the profiles of the higher order moments (Fig. 7c, e, g). The model
results are in excellent agreement with the experimental observations.
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Fig. 7 ES case: comparison between experimental and modelled transverse profiles of the concentration
statistics at source height and at x/δ = 0.625: a c∗, c σ∗

c , e m
∗
3, g m

∗
4, and at x/δ = 3.75: b c∗, d σ∗

c , f m
∗
3, h

m∗
4. Blue circles experimental values for ES 3, red crosses experimental values for ES 6, blue solid line and red

dash line solutions provided by Eq. 27, blue dash line solutions provided by Eq. 21. Note that at x/δ = 0.625
the differences between the solutions computed by means of Eq. 21 and Eq. 27 are negligible
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Fig. 8 LLS case: concentration statistics vs x/δ at y/δ = 0, z/δ = zs/δ: a σc/c, b m3/c, c m4/c

As we proceed downwind from the source, the results show a slight deterioration, which
is only partially corrected by adopting a 3-D model of icr . In Fig. 7b, d, f, and h we show
a comparison between experimental and analytical results for the ES 3 emission, computed
with both the 1-D and the 3-D models of icr (Eq. 25) at z/δ = zs/δ and x/δ = 3.75, where
the influence of the source size has become negligible. The model provides quite accurate
estimates of the concentration statistics, even though the spreads of the simulated profiles of
m∗

3 and m
∗
4 are narrower than the experimental profile.

4.2 Low-Level Source

As for the ES case, the modelled profiles of the second-, third- and fourth-order moments of
the concentration as function of the x-coordinate at y = 0 and z = zs (Fig. 8) present a fairly
good agreement with the experimental data, both close to the source and in the far field.

Even in this case the predictions performed through 1-D and 3-D formulations of icr
provide good results of the concentration statistics close to the source, given the ζy coefficient
is next to zero up to x/δ ≈ 0.5 (see Fig. 4). This is shown in Fig. 9a, c, e, and g, where we
have plotted the transverse profiles of the concentration statistics at the source height.

In the far field, the model with icr = icr (x) is not able to reproduce the profiles of
the concentration statistics, even qualitatively. As Fig. 9d, f, and h show, the model fails
to reproduce the off-centreline peaks and the transverse profiles keep a Gaussian shape. In
order to improve the model prediction it is then necessary to assume icr = icr (x, y, z).
The results of the model are however less accurate than in the ES case. In the far field,
the model underestimates the mean concentration peak on the plume axis (Fig. 9b), due
to the discrepancies between the modelled σy (Eq. 15) and its experimental values (Nironi
et al. 2015). The transverse profiles of the higher order moments show the emergence of off-
centreline peaks, that are particularly marked for the third order moment. The model captures
these tendencies qualitatively but its quantitative predictions show significant discrepancies
with the experimental data (Fig. 9d, f, h).

5 Error and Sensitivity Analysis

Finally, we evaluate the reliability and robustness of the fluctuating plume model by means
of:

– estimates of its global accuracy, computed through a comparison between the measured
and computed concentration statistics;

– a Monte-Carlo analysis providing the sensitivity of the solutions to variations of the key
parameters.
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Fig. 9 LLS case: comparison between experimental and modelled transverse profiles of the concentration
statistics at the source height and at x/δ = 0.625: a c∗, c σ∗

c , e m
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4. Circles experimental values, solid line solutions provided by Eq. 27, dash line solutions provided
by Eq. 21. Note that at x/δ = 0.625 the differences between the solutions computed by means of Eq. 21 and
Eq. 27 are negligible
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Fig. 10 Relative error of the transversal profiles vs x/δ for 1-D model of icr : a ES 3, b ES 6, c LLS; and 3-D
model of icr : d ES 3, e ES 6, f LLS

5.1 Errors

To investigate the reliability of the model we need to quantify the gap between the measured,
(m∗

i )exp and the computed (m∗
i )mod values of the moments of the concentration. To this end

we define the relative error as

REi =
√√√√
∫ [

(m∗
i )mod − (m∗

i )exp
]2 ds∫ [

(m∗
i )exp

]2 ds , (34)

with i = 1, 2, 3, 4, ds = dy, dz and where i is the moment number.
The analysis is performed considering the cases of icr parametrized by the 1-D model

(Eq. 23c) and the 3-D model (Eq. 25). Figure 10a–c show that the relative error associated
to the mean concentration RE1 takes low values across the whole domain. Conversely RE2,
RE3 and RE4 computed for 1-D icr model are bounded close to the release point, but they
increase significantly away from it.

The relative errors evaluated for 3-D icr model are reported in Fig. 10d–f, where RE1 is
not plotted, since it does not depend on the formulation of icr . REi of the transversal profiles
are bounded in all the cases, except for RE3 in the LLS case (Fig. 10f). This is due to the
particular shape of the experimental profile of m∗

3 at x = 5δ, that exhibits significant off-
centreline peaks. As shown in Fig. 9f, the model reproduces this behaviour only qualitatively,
but it fails in quantifying the centreline values of m∗

3.
In the light of this analysis, we can however conclude that, by adopting a suitable para-

metrization of icr , the model reproduces the statistics of the concentration field produced by
a fluctuating plume with good accuracy.

5.2 Sensitivity Analysis

In order to discuss the reliability of the model for operational purposes, we analyze its sen-
sitivity to several key parameters, whose evaluation is potentially affected by non-negligible
errors. Our analysis focuses on twomain features. Firstly, we discuss the uncertainties related
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Table 5 Turbulent velocity field at zm and zs

u (m s−1) σv (m s−1) σw (m s−1) ε (m2 s−3)

zm = 0.14δ 3.2 0.28 0.23 0.18

zs = 0.06δ 2.6 0.29 0.22 0.38

to the reference value of the vertical coordinate at which are evaluated the velocity statis-
tics used to compute the model parameters. Secondly, we analyze the errors induced by
uncertainties in the parametrizations of icr .

In the results presented in Sect. 4, velocity statistics, i.e. um , σv , σw and ε, were evaluated
at the plume centroid z = zm , which varies with the distance from the source. A simpler
approach consists of estimating these same quantities at a fixed reference height, generally
the source elevation zs . As an example, we show in Table 5 the differences of these velocity
statistics in the far field (x/δ = 3.75) for the LLS emission, as computed at zs and zm (in this
case ≈ 2.5zs). As shown in Table 5 the two parameters that exhibit higher variations are um
and ε. Comparisons of the concentration statistics computed at x/δ = 3.75 for the LLS case,
and adopting these two different sets of input data, are plotted in Fig. 11a–c. Results clearly
show that these variations in the input data affect significantly the model performances and
produce differences in the standard deviation and the third- and fourth-order moments of the
concentration exceeding 100 %.

As a second step, we investigate the sensitivity on the parametrization of icr (Eq. 23c).
Since the spatial distribution of the concentration fluctuations downwind the source is highly
influenced by the emission conditions (Nironi et al. 2015), i.e. source size and elevation, the
determination of a suitable longitudinal profile of icr represents actually the main modelling
challenge. To test the influence of uncertainties in the parametrization of icr we performed a
Monte-Carlo simulation, assuming that the coefficients in Eq. 23c are normally distributed,
with averages values given by the reference values reported inTable 2 and a standard deviation
corresponding to 10 % of the average. These turn out to be a maximum close to the source
(≈15 %) and a minimum far from it (≈10 %). The variations of the second-, third- and
fourth-order moments are shown in Fig. 11d–f and attain a maximal value ≈20 %.

The same analysis was performed for the parameters ζy and ζz (see Eq. 25) characterizing
the evolution of icr in the transversal and vertical directions. These were assumed to be
normally distributed, with a standard deviation equal to 10 % of the mean values reported
in Table 3. The resulting uncertainties in the vertical profiles of the high order concentration
statistics at x/δ = 0.625 for the LLS case are plotted in Fig. 11g–i. These show that variations
of these parameters have little influence on σ ∗

c (Fig. 11g) and m∗
3 (Fig. 11h) whereas they

can induce significant variations in the m∗
4 profiles (Fig. 11i), especially at the plume edges.

6 Discussion and Conclusion

We have investigated the reliability of a meandering plume model to simulate the dispersion
of a passive scalar emitted within a neutral turbulent boundary layer. Following most authors
who presented a similar model (Sawford and Stapountzis 1986; Yee et al. 1994; Luhar et al.
2000; Cassiani and Giostra 2002; Franzese 2003), we base its formulation on two main
assumptions. The first is that the dispersion of the plume centre of mass and that of the tracer
particles around it are statistically independent. The second is that both dispersion processes
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are given by motions in the vertical and transversal plane that are decoupled one from the
other. The first assumption is actually verified only close to the source and in the far field.
The second cannot be strictly justified on some physical basis. It is rather adopted since it
allows simplification of the model formulation.

A fluctuating plume model requires the setting of several parameters. According to our
formulations, these are C0 and Cr , the Kolmogorov and Richardson–Obukhov constants,
respectively, αT , required to evaluate the time scales Tmy and Tmz characterizing the intensity
of the meandering downwind the source, and the parameters needed to model the spatial
evolution of the intensity of the relative concentration fluctuations icr in the longitudinal
direction and in the transversal planes (α1, α2 and α3). All these parameters were set by
systematically comparing our model results to the experimental data presented in Nironi
et al. (2015), in particular concerning the Eulerian integral length scales, the total plume
spreads σy and σz and the spatial distribution of ic. Furthermore, the information provided by
this experimental dataset was used here to verify the consistency of the model formulation, as
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well as of the procedure adopted to tune its parameters, with the main features characterizing
the physics of the dispersion process.

We have then tested the performances of the model by comparing its solutions with
experimental profiles of the higher-order moments of the concentration PDF (Nironi et al.
2015). The comparison shows that, despite the theoretical weakness of some of its basic
assumptions, once properly set the governing parameters, the meandering model is able to
predict the concentration statistics with a suitable accuracy and to simulate the effects due
to the source size and elevation. In the near field, a good accuracy of the results could be
achieved assuming a constant icr on the yz-planes. The good agreement between model
simulations and experimental data persists even at larger distances from the source, where
the assumption of the statistical independence of the meandering and the relative dispersion,
as well as of the vertical and transversal motions, is far from being verified. Finally, in the
far field, as the relative dispersion becomes the only relevant dispersion mechanism, the 1-D
model results progressively deteriorate. To reliably reproduce profiles of the higher-order
moments, the model requires a more complex formulation of icr , which takes account for its
variability along the transverse and vertical directions.

In view of the application of the model for operational purposes, we have finally tested
its sensitivity to the variations of several key parameters. The analysis shows that the model
performances can be significantly affected by varying the reference values of the height from
the ground at which the velocity statistics are estimated. Furthermore, the model is shown to
exhibit also a strong sensitivity on the parametrization of icr , especially in the near field.

This sensitivity of the model to parametrization of icr represents, in our opinion, the main
limitation for its use for operational purposes, since the spatial distribution of icr is strictly
linked to that of ic. As widely discussed in Nironi et al. (2015), the evolution of ic is highly
influenced by the conditions at the emissions. These include the source elevation and diameter
and the emission velocity, as well as other features characterizing the source design that can
affect the flow dynamics in the wake of the source, where most of the production of the
concentration variance takes place. All these aspects influencing the plume dynamics in its
initial phase of growth can not realistically be fully characterized when applying the model
to atmospheric emissions. As a consequence, estimates of the higher-order concentration
statistics in this near-field region can be affected by significant uncertainties.

Given these uncertainties of the model results in real case studies and in the light of
the findings presented in Nironi et al. (2015), a last remark can be made. As long as the
Gammadistributionwas shown to reliablymodel the concentrationPDF (independently of the
emission conditions), it is actually questionable if, for operational purposes, the concentration
statistics deserve to be computed by a meandering plume model, that requires several input
parameters, rather thanwithmore simple semi-empiricalmodels. These should be formulated
in order to provide solely estimates of c and ic, the two independent quantities needed to
fix the form of the Gamma distribution, which can be subsequently used to compute the
higher-order moments.
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Abstract. A Lagrangian stochastic micromixing model is used to predict the con-
centration fluctuations of a continuous release in a neutral turbulent boundary layer.
We present the computational algorithm that implements two different micromixing
schemes and we verify its reliability with the experimental data. We discuss the
influence of the source size on the concentration probability density function in the
near and far-field and point out skills and shortcomings of the two schemes.

Keywords: Atmospheric boundary layer; concentration statistics; fluctuating plume;
Lagrangian stochastic model.

1. Introduction

The impact assessment of risks related to the dispersion of flammable
gases and toxic substances requires a reliable description of the concen-
tration probability density function (PDF) and estimates of the higher
order moments of the concentration. This can be achieved by means of
Lagrangian stochastic micromixing models, which simulate the effects
of molecular diffusivity on the mixing of a pollutant with ambient
air. So far, this approach was used by several authors for varying
flow configurations. Cassiani et al. (2005a) and Postma et al. (2011a)
simulated the dispersion of a point source in the neutral boundary
layer and compared the concentration fluctuation intensity with the
experimental profiles provided by Fackrell and Robins (1982). Cassiani
et al. (2005b) analysed the case of a convective boundary layer whereas
(Postma et al., 2011b) focused on a neutrally stratified canopy flow. In
all over mentioned studies, the analysis was however limited to the first
two moments of the concentration PDF. To our knowledge, the only
analysis extended up to the fourth moment is that of Sawford (2004)
in homogeneous turbulence.

Here we take advantage of recent wind tunnel experiments (Nironi
et al., 2015) and we evaluate the accuracy of a such a model in es-

c© 2016 Kluwer Academic Publishers. Printed in the Netherlands.
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timating the first four concentration moments in a fluctuating plume
in neutral boundary layer. In doing so, we test two different schemes.
One is usually referred to as Interaction by Exchange with the Condi-
tional Mean (IECM) model, the other as Volumetric Particle Approach
(VPA). Both models rely on a same macromixing scheme, formulated
according to the Thomson’s (1987) well-established well-mixing condi-
tion.

2. Model equations

The temporal evolution of the velocity and position Xi of an ensemble
of independent fluid particles is governed by the following stochastic
differential equations:

dU ′
i = ai(X,U′, t)dt + bij(X,U′, t)dξj , (1)

dXi = (〈ui〉+ U ′
i)dt, (2)

where U ′
i is the Lagrangian velocity fluctuation related to the Eulerian

mean velocity 〈ui〉, dξj is an incremental Wiener process (Gardiner, 1983)
with zero mean and variance dt.

The deterministic acceleration term ai is a function of the turbulent
statistics and its simplest three-dimensional solution is given imposing
the well-mixed condition (Thomson, 1987). This assumes that for a
fixed temporal instant and a space position, if the particle distribution
in the domain is homogeneous, each statistic of the particle velocity
has to be equal to the statistic of Eulerian velocity of the fluid. As a
consequence of that, the particles have the same dynamical properties
of the fluid. For uncorrelated velocity components, the term ai is defined
by the following equation:

ai = − U ′
i

TLi
+

1

2

∂σ2
ui

∂xi
+

U ′
i

2σ2
ui

(
Uj

∂σ2
ui

∂xj

)
with i = 1, 2, 3, (3)

The stochastic diffusive term bij is defined from the Kolmogorov’s hy-
potheses of self-similarity and local isotropy in the inertial subrange
(Pope, 1987):

bij = δij
√
C0ε, (4)

where δij is the Kronecker delta. We recall that the Lagrangian in-
tegral time scales TLi represent the autocorrelation coefficients of the
Lagrangian velocity and they are expressed as a function of the velocity
variances σ2

ui, mean turbulent kinetic energy dissipation rate ε and
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Lagrangian Kolmogorov constant C0:

TLi =
2σ2

ui

C0ε
. (5)

2.1. Interaction by Exchange with the Conditional Mean
(IECM) model

Eqs. 1 and 2 provide information about first-order statistics only. The
simulation of the higher-order statistics of the concentration field re-
quires the introduction of another Markovian state variable C repre-
senting the particle concentration:

dC

dt
= φ(C,X,U′, t), (6)

where the drift coefficient φ is responsible for the dissipation scalar vari-
ance. This approach aims in suitably modelling the evolution of PDF
concentration in composition space accounting for the effects of the
molecular diffusivity (Pope, 1998). In other words, the modelling of φ
requires that the concentration field is homogenised by mixing towards
the mean values. One of the most sophisticated models used to repro-
duce the main features of the concentration PDF is the IECM model
that assumes the following parametrization (Sawford, 2004, Cassiani
et al., 2005a, Postma et al., 2011a):

dC

dt
= −C − 〈C|X,U〉

τm
, (7)

where 〈C|X,U〉 is the mean scalar concentration conditioned on the
local position and velocity. The parameter τm represents the time scale
of the local mixing, which is driven by relative dispersion (Cassiani
et al., 2005a). The time scale τm is then expressed as a function of local
velocity variance, mean turbulent kinetic energy dissipation rate, source
size, and particle flight time. The IECM model simulates explicitly the
micromixing process as given by a mass exchange between polluted
fluid particles and ‘clean’ particles of ambient air.

2.2. Volumetric Particle Approach

The Volumetric Particle Approach (VPA) was developed by Cassiani
(2013) in order to compute the first two moments of the concentration
(mean and variance) without taking into account the background par-
ticles. That causes a substantial simplification in the representation of
the phenomenon allowing one to obtain a considerable saving in the
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computational resources. In this approach we associate the fictitious
volume Vp to the plume particles and we simulate the micromixing
as a change in Vp. In particular, the dissipation of scalar fluctuations
is related to a sort of dilution of the marked particles. To define the
volume Vp we introduce the mass of tracer mp carried by a particle.
For a non-reactive scalar this mass is conserved (dmp/dt = 0) and Vp is
defined as the ratio Vp = mp/C. The temporal evolution of the volume
Vp is described by the following equation:

Vp(t+ dt) = Vp(t)
C(t)

C(t+ dt)
(8)

whereas the concentration C can be modelled through Eq. 7.
The computation of the mean concentration 〈C〉c requires the spatial

discretisation of the computational domain and it depends on the global
mass Mc in each space element

〈C〉c =
Mc

Vc
=

1

Vc

Nc∑

i=1

mpi =
Nc∑

i=1

Ci
Vpi

Vc
(9)

where Nc is the particle number held in the generic cell.
The term Vpi/Vc is the probability that the particle i takes the con-

centration Ci. With this assumption the second-order moment 〈C2〉c
can be estimated in analogy to Eq. 9:

〈C2〉c =
Mc

Vc
=

1

Vc

Nc∑

i=1

mpi =
Nc∑

i=1

C2
i

Vpi

Vc
(10)

In what follows, for the mean concentration c and variance σ2
c we

assume this notation:

c = 〈C〉c (11)

σ2
c = 〈C2〉c − 〈C〉2c . (12)

It is worth noting that the VPA model provides satisfactory results
for the second-order statistics (Cassiani, 2013) but it is not able to
reproduce the evolution of the PDF concentration. Despite this short-
coming inherent to the model formulation, one of the main results
presented in Nironi et al. (2015) is that concentration PDF can be
described with good accuracy by a Gamma distribution univocally
defined by c and σ2

c :

p(χ) =
kk

Γ(k)
χk−1 exp(−kχ) (13)
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where Γ(k) is the Gamma function, k = i−2
c = (σc/c)

−2 and χ ≡ c/c
(c being the sample space variable). This implies that the higher order
statistics can be easily computed with Eqs. 9 and 10 to obtain c and
σc, and assuming a Gamma distribution.

3. Model parameters

The coupling between the Lagrangian stochastic model (Eqs. 1 and 2)
and the micromixing model (Eq. 7) is performed by the numerical code
SLAM, Safety Lagrangian Atmospheric Model (Vendel et al., 2011).

The micromixing time and conditional mean concentrations are es-
timated during a pre-processing step, computing the trajectories of a
small ensemble of particles released at the source location.

3.1. IECM model

The molecular diffusivity effects on the concentration fluctuations are
considered by simulating the influence of the background particles. This
strategy allows us to obtain a multitude of concentration values and,
therefore, suitable approximations of the concentration PDFs.

The numerical simulations are performed following the approach
of Cassiani et al. (2007). At the initial time-step a set of particles
is uniformly distributed in the whole computational domain and each
particle moves in accordance with the Eqs. 1 and 2. During this motion
the particle concentration changes (Eq.7) assuming a large variety of
values that allows the high order statistics to be computed . In order to
increase the solution accuracy, a time-averaging is performed. A suit-
able choice of the boundary conditions allows us to correctly reproduce
the dispersion of the passive scalar and to keep constant the number
of particles during the simulations:

− top, the particle velocity and position are perfectly reflected and
the concentration is absorbed;

− ground, the particles are elastically reflected and they conserve
their concentration;

− inflow/outflow, periodic conditions are applied to the particle po-
sition and the absorption of the concentration is imposed;

− source, the influence of the source is taken into account by mark-
ing the near-source particles with a normally distributed scalar
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concentration Csrc:

Csrc =
Q

2πσ2
0〈ux〉

exp

(
− r2

2σ2
0

)
(14)

where Q is the source mass-flow, 〈ux〉 is the longitudinal Eulerian
mean velocity at the source location (xs, ys, zs), σ0 is the source
size and r2 = (y− ys)

2+(z− zs)
2 is the distance from the particle

to the source in yz-plane.

It is worth noting that, the perfect reflection of the particles is
able to ensure the well-mixed condition (Thomson, 1987) if the tur-
bulence is Gaussian and homogeneous, but no reflection scheme sat-
isfies the well-mixed condition where the PDF for the normal veloc-
ity is asymmetric or locally inhomogeneous (Wilson and Flesch, 1993,
Wilson and Sawford, 1996). However, according to Wilson and Flesch
(1993), the perfect reflection is acceptable in bounded Gaussian inho-
mogeneous turbulence, e.g., neutral surface layer.

Such micromixing model requires the tuning of some free param-
eters in order to get a suitable accuracy in the solutions (Postma
et al., 2011a): the Kolmogorov constant C0, that influences the La-
grangian integral time-scales, the Richardson-Obukhov constant Cr and
the micro-mixing constant µt, that affect the micromixing time, and
the initial source distribution σ0, that depends on the source diameter
ds. It is worth noting that this approach requires a large amount of
computational resources due to the elevated number of particles.

The numerical experiments concerned a preliminary study of the
influence of the discretisation parameters. We performed some simula-
tions on a uniform grid, varying the cell dimensions and the time-step
length, and we verified that the solutions were affected by neither the
time-step length nor the space discretization (Figure 1a). The same
analysis was carried out on the influence of number of the velocity
classes used in the definition of the conditional mean concentration. Fig-
ure 1b shows that 3 classes for each velocity components are sufficient
in order to have a suitable accuracy. Table I summarizes the param-
eter values adopted in the simulations in order to have a satisfactory
agreement with the experimental measures.

Table I. Free parameter values adopted in
the simulations.

C0 σ0 Cr µt Velocity classes

4.5 2ds 0.3 0.6 3× 3× 3
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Figure 1. Non-dimensional standard deviation of the concentration σ∗
c vs. y/δ

at the source height. (a): x/δ = 0.625, (A) ∆t = 1.0e − 3 s, ∆x = 0.02 m,
∆y = ∆z = 5.0e − 3 m; (B) ∆t = 5.0e − 4 s, ∆x = 0.02 m, ∆y = ∆z = 5.0e − 3 m;
(C) ∆t = 1.0e − 3 s, ∆x = 0.01 m, ∆y = ∆z = 3.0e− 3 m; (b) x/δ = 5.0

3.2. VPA model

As shown in Cassiani (2013), the VPA model is able to provide accurate
solutions by implementing the Interaction by Exchange with the Mean
(IEM) model (Pope, 2000), that corresponds to Eq. 7 with a unique
class:

dC

dt
= −C − 〈C(X)〉

τm
. (15)

where 〈C(X)〉 is the mean concentration in the space domain. The
source is approximated by a cylindrical top-hat distribution with size√
8σ0:

Csrc =
Q

π
4 (8σ

2
0)〈ux〉

(16)

The value of C0 and Cr are the same for IECM model, whereas the
micromixing constant µt is equal to 0.35. The difference between µt

in the IECM and VPA models was previously discussed in Cassiani
(2013).

4. Results

The ability of the Lagrangian stochastic micromixing model SLAM
to estimate the concentration fluctuations was investigated. In the nu-
merical experiments we simulated the dispersion of a fluctuating plume
produced by a continuous release from two point sources in the neutral
boundary layer and we compared the numerical results with the wind
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tunnel measurements presented in Nironi et al. (2015). We investigate
the concentration plume releases by two elevated sources (zs/δ = 0.19)
of different diameters ds:

− ES 3: ds = 0.00375δ,

− ES 6: ds = 0.0075δ.

The main features of the velocity field imposed in the simulations are
also presented in Nironi et al. (2015).

4.1. Profiles of concentration statistics

In order to test the reliability of the model, we computed the mean
concentration c and 2nd, 3rd and 4th moments around the mean and
we compared them with the corresponding experimental values after a
suitable normalization:

m∗
i =


 1

Nc

Nc∑

p=1

(Cp − c)i



1/i

u∞δ2

Q
i = 2, 3, 4 (17)

where u∞ is the velocity at the boundary layer height, Nc is the
number of particles in a control volume and Cp is the particle concen-
tration. For the sake of simplicity in the figures we replace m∗

2 with
σ∗
c .

4.1.1. IECM model
The experimental data show that the differences in the source diam-
eter do not affect the mean concentration, whereas they influence the
higher order moments (Fackrell and Robins, 1982, Nironi et al., 2015).
This influence is significant in the near-field (Figures 2 and 3) and it
gradually becomes negligible for increasing distances from the source
(Figure 4).

In the near-field (Figures 2 and 3) the model is able to reproduce the
influence of the source size on the concentration fluctuations showing a
good agreement with the experimental values; in particular, Figures 2b-
d and Figures 3b-d show that the differences in the concentration PDFs
due to the source diameter are correctly simulated.

In the far-field (x ∼ 500− 1000ds) the model slightly overestimates
the experimental values, but it is able to suitably simulates the negligi-
bility of the source size on the computed standard deviation (Figures 4a
and 4b). On the contrary, some discrepancies occur on the higher order
moments: the numerical solutions overestimate the experimental results
and some differences due to the source diameter persist (Figures 4c and
4d).
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Figure 2. ES case: concentration statistics vs y/δ at x/δ = 0.625, z/δ = zs/δ: a) c
∗,

b) σ∗
c , c) m

∗
3, d) m

∗
4.

The longitudinal evolutions at the height source zs and y = 0 of the
fluctuation intensity ic = σc/c, skewness Sk and kurtosis Ku of con-
centration show the shortcomings of the model. In fact, the agreement
between experimental and numerical profiles of ic is satisfactory in all
the domain (Figure 5a), whereas the computed Sk and Ku globally
overestimate the experimental values (Figures 5b and c) and in the
far-field the influence of the source size is still significant.

Note that at x/δ = 5 the experimental concentration PDF has not
yet assumed a Gaussian shape since Sk ≃ 2 and Ku ≃ 16. We recall
that a Normal distribution is characterized by Sk = 0 and Ku = 3.

4.1.2. VPA model
The VPA model allows the estimate of the spatial distribution of the
first two moments of the concentration PDF, i.e. c∗ and σ∗

c , only. Higher
order moments will be computed assuming that the PDF is modelled
as a Gamma distribution, whose form is fully determined by c∗ and σ∗

c .
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Figure 3. ES case: concentration statistics vs y/δ at x/δ = 1.25, z/δ = zs/δ: a) c∗,
b) σ∗
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∗
3, d) m

∗
4.

The relation for the 3rd and 4th order moments are therefore given by:

m∗
3 = (2ic)

1/3 σ∗
c (18)

m∗
4 =

(
6i2c + 3

)1/4
σ∗
c (19)

Figure 6 shows that in the near field, i.e. x/δ = 0.625, the VPA
model associated with the Gamma distribution correctly simulates all
the moments of the concentration for the small source, whereas the
experimental values of the ES 6 source are quite overestimated, es-
pecially on the plume axis. However, the differences between the ES
3 and ES 6 sources are partially reproduced. Moving away from the
source, x/δ = 1.25 the model tends instead in slightly underestimating
values of all moments of ES 3 source, whereas the agreement with
the ES 6 source is very good (Figure 7). At this location the model
fails to reproduce the differences due to the source sizes as shown in
the experiments. The VPA formulation seems to produce a smoothing
effect on the concentration fluctuations induced by the meandering
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Figure 4. ES case: concentration statistics vs y/δ at x/δ = 3.75, z/δ = zs/δ: a) c∗,
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mechanism that results in reducing too quickly the differences due to
the source diameter. In the far-field, i.e. at x/δ = 3.75, the model
reproduces accurately the profiles of all moments, with a general ten-
dency in slightly underestimating their values (Figures 8). Here VPA
model is able to make negligible the effects of the source size on the
higher order moments as shown in the experimental data. Comparing
longitudinal profiles along the plume axis provided by the IECM and
VPA model (Figures 5 and 9) we observe that the latter can actually
reliably reproduce the tendencies registered in the experiments for the
intensity of the concentration fluctuations ic, as well as for the skewness
Sk and the kurtosis Ku.

4.2. One-point concentration PDF

In order to look inside the micromixing model and its possible short-
comings, we report some plots of the concentration PDFs evaluated
at y = 0 and z = zs at varying distances from the release point. The
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Figure 5. High order statistics of concentration vs x/δ: a) ic, b) Sk, c) Ku.

PDFs are non-dimensionalised with the local mean concentration (see
Eq. 13) and plotted in logarithmic scale in order to highlight also the
effect of the small concentration values.

4.2.1. IECM model
For the numerical solutions, we obtained the PDFs by collecting a
large number of particles passing through some small volume elements.
In order to verify the reliability of the Gamma distribution to describe
the concentration PDF, we also plot the Eq. 13 parametrized with the
experimental values of ic. Figure 10 shows the comparison between
the experimental and computed PDF in the near-field at x/δ = 0.625.
We observe that the shape of PDFs estimated by the experimental and
numerical data is very similar and it approaches a Gamma distribution,
both in ES 3 (Figures 10a and 11a) and ES 6 cases (Figures 10b and
11b). At x/δ = 1.25 the agreement between experiments and simula-
tions worsen (Figure 11) and the PDFs obtained with IECM model
exhibit a shape quite different from the Gamma distribution, underes-
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timating the intermediate values of concentration and overestimating
the small ones. Nevertheless the agreement between the global profiles
is quite satisfactory (Figure 3).

Increasing the distance from the source location, Gamma distribu-
tion approximates the experimental PDF again, whereas the differences
with the IECM results become substantial. In particular, the modelled
PDFs significantly underestimate the occurrence of weak concentration
values. This is clearly shown in Figure 12 where we compare experi-
mental and numerical PDFS for the ES 6 case at x/δ = 3.75 and 5.0.

4.2.2. VPA model
One-point PDF for the VPA model are computed through Eq. 13, using
as parameters c∗ and σ∗ obtained by Eqs. 9 and 10. In the near-field at
x/δ = 0.625 we observe a general good agreement between numerical
and experimental estimates for the ES 3 source (Figure 13a), whereas
the ES 6 case presents some significant differences in the large and
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intermediate scales (Figure 13b) that cause the overestimate of the
higher concentration moments as shown in Figure 6 for the global
profiles.

Increasing the distance at x/δ = 1.25 the numerical PDF of the ES
3 source (Figure 14a) is globally displaced towards smaller values with
respect to the experimental one. That results in an underestimate of the
profiles of the concentration higher moments as reported in Figure 7.
On the contrary, Figure 14b shows that the model reproduces with very
good accuracy the experimental values for the ES 6 case.

In the far-field we observe a general good agreement between numer-
ical and experimental estimates (Figure 15). Some differences between
concern lower values, where experimental data generally show PDFs
with higher levels of concentration.
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4.2.3. Effect of the source size
We have studied the influence of the source size on the concentration
PDF directly. Figure 16a shows that in the near-field at x/δ = 0.625 σ0
affects the tails of experimental PDF: the probability of large values of
concentration is larger for the smaller source, whereas the probability
of weak values increases for ES 6 case. The effect of σ0 on the IECM
numerical PDFs is less clear: the probability at the tails is very similar
for ES 3 and ES 6 and some differences occur for the intermediate
values (Figure 16b). The PDFs computed by the VPA model show
that the probability of large values is larger for ES 3 case, although
the differences between the two sources are less evident that for the
experimental PDFs (Figure 16c).

In the far-field, the influence of the source size on the experimental
data disappears and the two PDFs are quite superimposed (Figure
17a). Conversely, some discrepancies persist on the IECM results, as
observed previously in §4.1. In particular, ES 6 presents a slightly
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Figure 9. High order statistics of concentration vs x/δ: a) ic, b) Sk, c) Ku.
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χ

p

exp

VPA

10−1 100 101 102 103

10−4

10−3

10−2

10−1

100a)

χ

p

10−1 100 101 102 103

10−4

10−3

10−2

10−1

100b)

Figure 15. concentration PDF of ES 6 in the far-field at y = 0, z/δ = zs/δ: a)
x/δ = 3.75, b) x/δ = 5.0.

larger probability for the high values of concentration, whereas the
tail corresponding to the low values assumes a larger probability for
ES 3 (Figure 17b). The VPA model provides solutions that exhibit the
correct behaviour in the far-field, i.e. the influence of the source size
becomes negligible, as shown in Figure 17c. The small differences that
persist in the lower values do not significantly affect the global profiles
of the higher concentration moments (see Figure 8).

5. Discussion and Conclusions

We have tested two formulations of the micromixing model, the Interac-
tion with Exchange with the Conditional Mean (IECM) and the Volume
Particle Approach (VPA). These were implemented in a Lagrangian
stochastic model (named SLAM) and we investigated their ability in
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Figure 16. concentration PDF at x/δ = 0.625, y = 0, z/δ = zs/δ: a) experiment, b)
IECM model, c) VPA model.

estimating the statistics of the concentration of a passive scalar emitted
within a turbulent boundary layer. We simulated the dispersion of a
fluctuating plume produced by a continuous release from two point
sources of different diameter and we compared the numerical results
with the experimental data-set reported in Nironi et al. (2015). The
numerical solutions show that the IECM model is able to correctly
simulate the concentration statistics in the near-field, reproducing the
source size effects on the high order moments. In the far-field the nu-
merical and experimental values of the mean and standard deviation
of the concentration are in good agreement. Concerning the third and
fourth moments, the IECM results in the far-field (x ≥ 3δ) show two
main differences when compared to the experimental data. Firstly, the
IECM model clearly tends to overestimate the third and fourth mo-
ments. Secondly, numerical profiles of the third and fourth moments
are shown to be still sensitive to the size of the source. This is not the
case in the experiments, where the influence of the source is no more
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Figure 17. concentration PDF at x/δ = 5.0, y = 0, z/δ = zs/δ: a) experiment, b)
IECM model, c) VPA model.

detectable as x ≥ 3δ. This behaviour can be reasonably attributed to
the tendency of the IECM model in underestimating the occurrence
of concentration values that are lower than the mean where the mean
concentration gradients are weak (Cassiani et al., 2005a).

These limitations of the IECM model can be conveniently avoided
by assuming that the concentration PDF corresponds to a Gamma
distribution, as suggested by Nironi et al. (2015). In this case all higher
concentration moments can be directly computed when disposing of
estimates of the mean and of the standard deviation of the concen-
tration. The semi-empirical approach is shown here to provide reliable
estimates of third and fourth order moment both in the near and in
the the far-field.

In this study we have further shown that the values of the mean and
of the standard deviation of the concentration can be also accurately
computed with a VPAmodel. The main advantages of this latter model,
compared to the IECM model, are the low computational costs. The
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VPA model requires a number of particles which is significantly smaller
to those needed in a IECM model, and therefore a smaller request of
RAM and CPU time. This feature makes the VPA model suited for
the simulation of dispersion phenomena for operational purposes and
in complex geometries.
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Chapter 8

Free and confined buoyant flows

There are a large number of flow configurations involving releases of buoyant pollutant which are of
major interest for environmental applications. Here our focus is on localised releases of buoyant flows
both in open and enclosed spaces. Examples are given by fire plumes in the atmosphere (fig. 8a), the
leakage of hydrogen from a pipe (fig. 8b) or the propagation of smoke within a ventilated tunnel.

In all these cases the buoyant releases evolve as a rising column of fluid, driven by the buoyancy
and/or the momentum imposed at the source. These flows are usually referred to as a plume or a
jet, depending on the predominance of buoyancy or momentum on the flow dynamics. For safety and
environmental problems, a key issue is that of determining the rate at which the plume dilutes in
ambient air.

Turbulent plumes can be described, without loss of generality, by integral models with a small
number of constant coefficients. An example of such a coefficient is the classic entrainment coefficient,
usually referred to as α, that relates the strength of the flow that is induced by a plume to the
characteristic velocity scale of the plume at a given height (Taylor, 1945). Following the classic work
of Priestley & Ball (1955) and Morton et al. (1956), integral models of turbulent plumes have provided
physical insights and a robust means of predicting bulk flow properties in applications ranging from
natural ventilation (Linden, 1999) to geophysics (Woods, 2010). Integral models are useful from an
operational and theoretical viewpoint because they focus one’s attention on dominant balances.

The importance of turbulent jets and plumes in practical problems and as a canonical turbulent
flow has inspired many experiments over the last 50 years (see e.g. List, 1982, and references therein)
and, more recently, numerical simulations (e.g. Plourde et al., 2008; Craske & van Reeuwijk, 2016).
However, in spite of the vast quantity of data that has been collected, several leading-order questions
remain open. What determines the rate at which a plume entrains fluid from its surroundings? How
does entrainment relate to the small-scale behaviour of turbulence? What determines the relative rate
of spread of the velocity and buoyancy profile in a turbulent plume?

To answer these questions we take advantage of laboratory experiments (sect. 8.1) and direct
numerical simulations (sect. 8.2) of buoyant releases characterised by their source conditions, given
by the balance between the fluxes of volume, momentum and buoyancy, and identified by a plume
Richardson number Γ0.

Following the approach originally taken by Priestley & Ball (1955), and subsequently resurrected
by Kaminski et al. (2005), we investigate herein the relationship between turbulent entrainment and
the mean-flow energetics of plumes. The key ingredient of these studies was to absorb the continuity
constraint into simultaneous equations for the momentum and the mean kinetic energy of the flow.
Direct numerical simulations and experiments indicate that turbulent entrainment depends on the
plume Richardson number, and that this mean-flow contribution is distinct from that associated with
the production of turbulence kinetic energy.

This work on turbulent buoyant releases provides interesting insight into the advantages and the
shortcomings of experimnetal and numerical methods to investigate these flows. The design of the
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a) b) 

c) 

Figure 8.1: Examples of buoyant releases within free atmosphere and confined spaces. a) smoke
propagation in the Buncefield fire (11 December 2005 at the Hertfordshire Oil Storage Terminal); b)
hydrogen release from a pipe; c) sketch of the smoke propagation in a ventilated tunnel.

experimental apparatus needed is not trivial to conceive, since it requires the production of buoyant
plumes in large spaces, i.e. over domains in which the evolution of the plume is i) sheltered by
external pressure and velocity perturbations and ii) not influenced by the presence of the wall bounding
the domain. Handling these boundary conditions in laboratory experiments is very difficult. These
difficulties are likely to be the cause of the discrepancies observed in the experimental estimates of
some key plume parameters presented in the literature, namely the entrainment coefficient and the
turbulent Prandtl number. In these conditions the use of Direct Numerical Simulations (DNS), at
Reynolds number that exceed 5000, becomes evidently a very attractive option. Setting the same
boundary conditions in DNS is much easier (although not trivial). Furthermore, the use of DNS
has two more relevant advantages compared to experiments: i) they provide information on flow
parameters that would be extremely difficult to measure experimentally (e.g. pressure); and ii) they
provide information over a whole volume of fluid, which is extremely useful when estimating bulk flow
parameters (such as the entrainment coefficient).

Finally, in sect. 8.3 we present an interesting application of integral plume models to predict key
elements of the flow dynamics within an enclosed space. Namely, we are interested in the intensity
of the ventilation that has to be imposed within a tunnel in order to control the propagation of a
buoyant flow release within it (see fig. 8c). Combining laboratory experiments with a mathematical
model, based on integral plume models, allows us to enlighten new features about the dynamics of
non-Boussinesq releases, i.e. characterised by large density differences between the buoyant and the
ambient flow. Our experiments show that buoyancy-driven releases are predicted to behave as point
sources of pure buoyancy, independently of their radius and of the density of the emitted fluid. This
implies that the so-called non-Boussinesq effects have no major influence on the flow dynamics as far
as gravitational effects take over those related to inertia. It is worth noting that, from a practical point
of view, both features support the use of simplified mathematical models for the simulation of these
flows, and define the ventilation systems for the management and the mitigation of accidental risks
related to the releases of toxic and flammable fluids in enclosed spaces.
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We present experimental measurements conducted on freely propagating, turbulent,
steady thermal air plumes. Three plumes are studied with differing source conditions,
ranging from jet-like, momentum flux dominated releases, to pure plume releases,
characterised by a balance between the momentum, volume and buoyancy fluxes
at the source. Velocity measurements from near the source to a height of tens of
source diameters were made using particle image velocimetry (PIV), providing a
high spatial resolution. Temperatures were measured with thermocouples. From these
measurements, we investigate the vertical development of the plume fluxes and radial
profiles of the mean velocity and temperature. These allow us to analyse the local
self-preserving characteristics of the mean flow and to estimate the dependence with
height of the plume Richardson number Γ . In addition, we analyse the similarity
of one-point and two-point second-order velocity statistics, and we discuss the role
of Γ on the vertical development of the bulk dynamical parameters of the plume,
namely, the turbulent viscosity, the turbulent Prandtl number and the entrainment
coefficient αG. Comparison with previous experimental results and with estimates
of the entrainment coefficient based on the mean kinetic energy budget allow us to
conclude on the influence of Γ on the entrainment process and to explain possible
physical reasons for the high scatter in estimates of αG in the literature.

Key words: plumes/thermals, turbulent convection, turbulent mixing

1. Introduction
Axisymmetric turbulent forced plumes produced by horizontal, circular sources

of constant buoyancy, momentum and volume fluxes have been the subject of
considerable research over the last 70 years or so. Zel’dovich (1937), Priestley
& Ball (1955) and Morton, Taylor & Turner (1956) developed the classic plume
model assuming a conceptual point source of buoyancy flux alone, complete
dynamical self-similarity, fully developed turbulence, small density differences and

† Email address for correspondence: pietro.salizzoni@ec-lyon.fr



Dynamical variability of axisymmetric buoyant plumes 577

negligible diffusion and radiation. The backbone of this theory has remained virtually
unchanged since. The validation of this theory has been comprehensive and has
essentially fallen into two categories: the first through widespread application where
the bulk flow of plumes occurring over a range of different scales, in the natural
and built environments, and in industry, are of interest; and the second through
predominantly experimental campaigns focusing on the details of the internal flow.
Although relatively few in number, the latter have provided a quantification of some
of the key dynamical quantities, such as the entrainment coefficient, the mean to
turbulent ratio of the vertical fluxes and of the radial spread of the buoyancy and
velocity profiles. These quantities are however characterised by a non-negligible
scatter, with differences that can exceed 20–25 % (Linden 2000). Despite this scatter,
the classic plume solutions provide a robust and reliable model for buoyant plumes in
geophysical and industrial contexts and have been extended to account for stratified
environments (Batchelor 1954; Caulfield & Woods 1998; Kaye & Scase 2011),
non-constant source strengths (Scase et al. 2006), negative buoyancy (Baines, Turner
& Campbell 1990; Carazzo, Kaminski & Tait 2008; Burridge & Hunt 2012; Mehaddi,
Vauquelin & Candelier 2012), chemical reactions (Zhou 2002; Campbell & Cardoso
2010; Ülpre, Eames & Greig 2013) and their non-Boussinesq counterparts (Rooney
& Linden 1996; Carlotti & Hunt 2005). For further reading on the development of
plume theory, review papers by List (1982), Kaye (2008), Woods (2010) and Hunt &
van den Bremer (2011) are recommended as is the text of Linden (2000).

More generally, we can assert that the dynamical properties of buoyant jets in their
asymptotic states of ‘pure jet’ and ‘pure plume’ are nowadays widely identified in
the literature. Much less is known about the variability characterising the dynamics
of buoyant releases in what may be regarded as the ‘transition’ states between
these asymptotic states, for example as the buoyancy flux of a highly forced plume
is systematically increased. Assuming a fully turbulent Boussinesq plume, with
negligible influence of diffusive phenomena, developing in an unstratified quiescent
ambient fluid, the flow dynamics can be shown to depend on a single non-dimensional
parameter: the plume Richardson number Γ . This may be evaluated at any height
z above the source (at z = 0) based on the local volume, momentum and buoyancy
fluxes (Hunt & Kaye 2001) as

Γ (z)= 5
27/2π1/2αref

Q(z)2B(z)
M(z)5/2

(1.1)

where αref denotes the reference value of the entrainment coefficient for Gaussian
profiles and the mean fluxes of volume Q, specific momentum M and specific
buoyancy B are defined as

Q(z)= 2π

∫ ∞

0
w(r, z)rdr

M(z)= 2π

∫ ∞

0
w2(r, z)rdr

B(z)= 2π

∫ ∞

0
w(r, z)g′(r, z)rdr,





(1.2)

where w is the Reynolds-averaged vertical velocity, r denotes the radial coordinate
of the axisymmetric plume (figure 1) and g′ = g((ρe − ρ)/ρe) denotes the Reynolds-
averaged buoyancy (g is the gravitational acceleration) of the plume fluid, of density
ρ(r, z), relative to a fixed representative density ρe of the ambient.
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FIGURE 1. Schematic of the experimental set-up for PIV on thermal air plumes with the
coordinate system (r, z) employed herein.

It is worth mentioning that when the plume density is significantly lower than
that of the ambient, such that the conditions are non-Boussinesq (Rooney & Linden
1996; Carlotti & Hunt 2005; van den Bremer & Hunt 2010), the ratio ρ/ρe has to
be considered as a second non-dimensional parameter on which the flow dynamics
depend.

The dependence of the plume dynamics on Γ and on ρ/ρe has rarely been
investigated experimentally and represents nowadays a major research axis in
this field. In order to focus on this variability, and primarily on the role of Γ ,
benefitting from advancement in visualisation and data acquisition techniques, we
have performed experiments on steady, thermal air plumes injected into a nominally
quiescent, unstratified laboratory enclosure at differing source Richardson number.
The remainder of this paper is structured as follows. We begin by reviewing the
major findings of previous experimental works on buoyant plumes in order to
motivate a further experimental investigation. The experimental set-up and plume
source conditions investigated are outlined in § 2. Radial profiles of time-averaged
velocities derived from particle image velocimetry (PIV) velocity and thermocouple
temperature measurements are examined in § 3. From the high spatial resolution of the
PIV measurements, we investigate the turbulent intensities, the turbulent momentum
transfer and the spatial structure of the turbulent flow (§ 4). Finally, in § 5 we present
different estimates of the entrainment coefficient that allow us to conclude on the
influence of Γ on the entrainment process.

1.1. Previous experimental results
In early experimental work, Ricou & Spalding (1961) injected air radially inwards
towards buoyant jets enclosed by a porous cylinder until they measured a zero pressure
drop across the cylinder. This satisfied what they called the ‘entrainment appetite’ of
the flow and, as a result, they determined the entrainment coefficient for buoyant gas
jets of varying densities. Although the releases were buoyant, the forcing at source
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was such that the flows were relatively jet-like over the region of interest. The major
contribution of their work was to establish a dependence of the entrainment coefficient
on the ratio ρ0/ρe of the injected fluid density (ρ0 = ρ(z = 0)) to the ambient fluid
density; the subscript ‘0’ is used throughout to denote the value of quantities at the
source.

George, Alpert & Tamanini (1977) investigated the buoyant plume and made
concurrent temperature and velocity measurements using two-wire probes. The
plumes were neither Boussinesq nor fully turbulent at the source. They found
that the velocity profiles were Gaussian and approximately 10 % wider than their
buoyancy counterparts. Their measurements of the fluctuating flow components show
that these were still developing at heights exceeding 20 source radii, yet also tend
towards Gaussian profiles. The entrainment coefficient in the far field was estimated
as αG = 0.108 (throughout the paper we always refer to Gaussian entrainment
coefficients, a factor

√
2 lower than the top-hat equivalent in classic plume theory).

Finally, George et al. (1977) estimated that the turbulent fluxes of momentum,
i.e. related to the standard deviation of the vertical velocity σ 2

w, and of buoyancy,
i.e. related to the correlation of vertical velocity and temperature w̃T̃ , are responsible
for 8 and 15 % of the overall fluxes, respectively. The same experimental apparatus
was used by Shabbir & George (1994), who conducted simultaneous velocity and
temperature measurements by means of a set of hot-wire and cold-wire probes. In
this case, the experimental facility was completed by a rack of thermocouples to
monitor the ambient air stratification and by concentric screens placed around the
source to prevent horizontal plume drift: the latter may have inadvertently influenced
plume entrainment. Source Reynolds numbers were slightly higher than those attained
by George et al. (1977), but not high enough to produce fully turbulent plumes
at the source. The study extended the George et al. (1977) analysis to third-order
moments of the velocity components, of the temperature and of their correlations. A
relatively poor fit of the mean vertical velocity data to a Gaussian curve is presented.
Given this poor fit of the key first statistical moment of the data, the validity of
the computation of second and third moments is questionable. Nevertheless, good
agreement is achieved between the measurements of the vertical fluxes and the
power-law relationships predicted by the classic plume model. Both George et al.
(1977) and Shabbir & George (1994) focus on the region where the flow reaches the
truly plume-like asymptotic condition, i.e. Γ = 1, and do not provide any information
on the transition region, as the flow adjusts from either jet-like (Γ � 1) or highly
lazy (Γ � 1) states at its source.

A first systematic investigation of buoyant jets examining the role of the plume
Richardson number at the source was performed by Papanicolaou & List (1988). They
used laser-Doppler anemometry (LDA) combined with laser-induced fluorescence
(LIF) to simultaneously measure velocities and concentrations in saline plumes at
frequencies of up to 50 Hz over a vertical extent of 80 cm (≈40–100b0, where b0
is the source radius) from an orifice measuring 0.75–2.0 cm in diameter. The spatial
resolution of their measurements was an order of magnitude lower than that reported
herein and their velocity data was acquired at points rather than over a plane. However,
the simultaneous measurement of salinity and velocity signals enabled correlation of
the two, and thereby one of the few published estimates of the turbulent buoyancy
flux in plumes: of approximately 16 % of the mean buoyancy flux. The source
Richardson number varied from jet-like to plume-like buoyant releases. Papanicolaou
& List (1988) found that the forced plume examined behaved in a jet-like manner
for z/LM < 1, a plume-like manner for z/LM > 5 and a smooth vertical transition
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between the two regimes occurred over 1< z/LM < 5, LM = C ·M3/4
0 /B1/2

0 denoting a
characteristic length known as the ‘jet length’ (with C = (5/9αref )

1/2(2/π)1/4). The
vertical extent of these regions agrees well with the theoretical prediction of Morton
(1959). Their measurements showed that the radial profiles of the statistics of density
and velocity within jet-like and plume-like releases do not differ significantly from
each other. Furthermore, these profiles do not show any significant discrepancy with
the LDA measurements on isothermal jets performed by Hussein, Capp & George
(1994). The noteworthy differences observed were related to the transport of buoyancy
produced turbulence, with almost twice the flux in pure plumes as in jet-like releases.
Other major differences concerned the ratio of length scales

ϕ = bg′/bw (1.3)

between the spread of buoyancy bg′ and velocity bw profiles that took an average
value of ϕ = 1.19 in plume-like releases and ϕ = 1.33 in jet-like releases, thereby
contradicting the findings of George, Alpert & Tamanini (1977). Finally, the
entrainment coefficient αG was found to be equal to αj = 0.0545 in pure jets and
αp = 0.0875 in pure plumes. The investigation of the dependence of ϕ and αG with
the plume Richardson number, however, was beyond the scope of their study.

Only relatively recently have plume dynamics been investigated with PIV thereby
allowing for higher spatial resolution of the velocity measurements than earlier
techniques. Wang & Law (2002) performed simultaneous velocity and density
measurements with PIV and planar laser-induced fluorescence (PLIF). They performed
experiments over a large number of saline plumes that were all highly forced at the
source, i.e. Γ0 � 1. As far as we are aware, this is the first experimental study
reporting the variability of ϕ and αG with the local Richardson number. Wang & Law
(2002) found a general trend of a decreasing ϕ with increasing Richardson number,
whereas αG was shown to increase with the Richardson number. Both features will
be widely discussed throughout the present paper. More recently Pham, Plourde &
Kim (2005) focused on the dynamics of a thermal plume generated by a heated plate
maintained at a constant temperature T0 = 400 ◦C. Pham et al. (2005) provided a
detailed description of the three-dimensional structure of the velocity field by means
of stereoscopic PIV, but did not report any temperature or density measurement.
From their PIV measurements they directly measured the entrainment coefficient
and compared it with estimates provided by classic indirect methods. However, the
lack of temperature data prevented them from linking the values of the entrainment
coefficient to the variation of Γ .

This overview of previous studies highlights the general lack of knowledge on the
behaviour of a buoyant plume in the transition state characterised by a local variation
of the plume Richardson number. This lack of knowledge motivates our work, which
aims to shed light on the dynamical variability of buoyant plumes. To this end we
performed experiments on plumes with highly contrasting conditions at the source,
characterised by values of Γ0 varying over three orders of magnitude.

2. Experimental set-up and parameters
We measured velocities and temperatures using PIV and thermocouples, respectively,

in thermal air plumes in a windowless, thermally insulated enclosure.
The experimental set-up is shown in figure 1. Air was fed from a compressor to

a mass flow-rate meter, where the mass flux was monitored and controlled by an
electronic feedback system. A small fraction of the air (≈5 % by volume) passed
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via a chamber where it was seeded with incense particles. The seeded air rejoined
the unseeded air immediately upstream of the heating element. The heated air then
passed through a diverging–converging section, over a turbulence grid and finally
through a diaphragm opening. Air temperature was monitored continuously at the
diaphragm to ensure steady source conditions. The ambient air was seeded using a
stage smoke generator, which filled the whole enclosure with approximately spherical
1 µm polyethylene glycol particles. Over a 10 min period, the release of smoke
spread to fill the enclosure uniformly. When the ambient air motion induced by the
initial jet of smoke dissipated, acquisition of data could begin. Approximately one
smoke injection per hour seeded the ambient sufficiently. Seeding both plume and
ambient air was necessary in order to obtain proper velocity statistics, statistics which
would otherwise be biased when solely seeding the plume.

Temperature measurements were made with a horizontal rake of thermocouples
spaced at 10 mm intervals. The uncertainty associated with these measurements was
estimated as ±0.5 K. The rake was sequentially displaced vertically at increments
of 10 mm, from z = 12 to z = 512 mm. Temperatures were measured for 3 min at
10 Hz.

We acquired and processed PIV data using LaVision’s DaVis 7.2 software.
Circular interrogation areas with a 50 % overlap were employed, resulting in a
spatial resolution of 0.7 mm. To achieve this resolution, the measurement plane was
split into various fields of view with 3000 image pairs acquired sequentially for
each field. In order to record sufficiently large particle images to allow for PIV
processing at 16 × 16 pixels and to minimise peak-locking, we split the acquisition
into 8 adjacent fields of view measuring approximately 150 mm (horizontal) ×
100 mm (vertical) with a 15 mm vertical overlap between successive fields to ensure
continuity of data. The camera could not be moved further than 1.5 m from the
laser plane to prevent peak-locking from becoming significant. Subpixel accuracy of
the processing algorithm was thus maintained. Measurements on plumes at a spatial
resolution of less than 1 mm have seldom been undertaken and those presented herein
represent a resource for numerical practitioners, experimentalists and theoreticians
alike. Velocity measurements were made at a frequency of 4 Hz, and the duration
of each acquisition was 12.5 min. Dynamic statistics were obtained from the 3000
instantaneous measurements.

In order to compare the spatial and temporal resolutions of our measurements
with characteristic (turbulent) time and length scales of the flows, estimates of a
typical length scale ` and velocity scale υ, the former approximately equal to the
plume radius and the latter to the standard deviation of the vertical velocities, were
computed. In the flows analysed here, ` varied from a minimum of approximately
10 mm in the near field of release J to a maximum of 75 mm in the far field of
release P (see table 1), whereas υ is of the order 1 m s−1 in release J and 0.1 m s−1

in release P. From these we obtained typical time scales τ ∼ `/υ of the order 10−2 s
for release J and 10−1 s for release P. The temporal resolution of the PIV and
thermocouple measurements are therefore slightly larger than τ and insufficient to
allow the computation of turbulent velocity and temperature spectra. The spatial
resolution of the PIV measurements is at least one order of magnitude lower than
` allowing for a detailed description of the velocity field structure. Conversely, for
thermocouple measurements the spatial resolution is coarser and approaches ` in the
near field of release J.

The injected air velocity was kept as high as practicable in order to maximise the
Reynolds number and reduce the influence of background disturbances. A nozzle was
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Release b0 T0 g′0 Q0 M0 B0 LM Γ0 Re0 zB
zmax

b0

zmax

LM
(cm) (K) (cm s−2) (cm3 s−1) (cm4 s−2) (cm4 s−3) (cm) (cm)

J 0.5 381 0.0232 0.54× 103 3.7× 105 1.3× 105 98 0.001 7700 15 132 0.8
F 1.5 381 0.0232 1.49× 103 3.1× 105 3.46× 105 47 0.034 2600 15 44 1.8
P 2.5 391 0.0252 1.01× 103 5.6× 104 2.65× 105 15 0.96 1100 13 26 5.5

TABLE 1. The three source conditions of the releases investigated giving the plume
Richardson number Γ0 = {0.001, 0.034, 0.96}; note that the value αref = 0.1 has been
assumed when calculating Γ0 from (1.1). The source buoyancy is g′0 = g(1T0/T0). Here
J refers to jet-like, F to forced plume and P to pure plume. We use zB to denote the
non-Boussinesq length scale (2.1), LM = C ·M3/4

0 /B1/2
0 to denote the jet-length, with C =

(5/9αref )
1/2(2/π)1/4. The final two columns report, respectively, the limiting measurement

heights, zmax, scaled on the source radius, b0, and on the jet length, LM .

selected with a maximum radius of 2.5 cm. With the 2 kW coiled heating element,
a maximum temperature difference of 1T0 = T0 − Te ≈ 90–100 K (Te is the ambient
air temperature) was possible and this enabled us to achieve a relatively high source
buoyancy flux at the lower velocities we considered. Table 1 summarises the three
different releases studied, where the letters J, F and P refer to jet-like, forced and pure
plume releases, respectively. Measurements were made over a vertical extent ranging
from 1 to 70 cm above the source. The corresponding non-dimensional heights are
listed in the final two columns of table 1.

For our set-up, the Reynolds number at the source (Re0= (w0b0)/ν, w0 denoting the
velocity at the source and ν the air kinematic viscosity) decreases with increasing Γ0.
The higher source Richardson number (table 1) of the pure plume required relatively
low flow velocities so that Re0≈ 1000, implying that the near-source flow field is not
fully turbulent (we return to this in § 3). The temperature at the source reached 393 K,
producing flow conditions that are nominally beyond the limits of the Boussinesq
approximation. Woods (1997) suggested a length scale over which non-Boussinesq
effects are significant as

zB = 5
3

(
B2

0

20α4
ref g3

)1/5

. (2.1)

An estimate of this length scale for our experiments leads to zB ∼ 15 cm. A non-
negligible part of the domain could therefore be affected by non-Boussinesq effects
on the flow dynamics.

The experimental apparatus was conceived to produce buoyant turbulent plumes
within an unstratified quiescent environment. We however observed two main features
inducing non-negligible departures from these ideal conditions. The first concerned
the diffusion of heat along the horizontal rigid wooden base plate within which the
nozzle was mounted (figure 1). Heat transferred from this plate (at z = 0) resulted
in a region, of approximately 5 % of the vertical extent of the domain, where the
ambient air temperatures could not be considered to be uniform. Figure 2 shows the
mean temperatures in the ambient measured over the course of the three experiments
using a rack of thermocouples. From these we estimate the temperature gradient to
be 1 K cm−1 over a layer approximately 3 cm thick immediately above the plate.
The second concerned the ambient air which was not perfectly still. Background
air motion was unavoidable for a number of reasons: the release induces a flow
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FIGURE 2. Vertical profiles of ambient temperature T (degrees centigrade) registered in
experiments for releases (a) J, (b) F and (c) P.

Symbol E u � 1 D B ∗ + × C ♦ ‘ e

J 9.0 16.1 23.2 30.2 37.3 44.4 51.5 58.5 65.6 72.7 79.8 86.8 93.9
F 3.0 5.4 7.8 10.2 12.5 14.9 17.3 19.7 22.0 24.5 26.8 29.2 31.6
P 1.8 3.2 4.6 6.0 7.4 8.8 10.2 11.6 13.0 14.4 15.8 17.2 18.6

TABLE 2. Non-dimensional profile heights zb= z/b0 plotted in figures 3, 4, 9, 10 and 15.

within the confines of the test room as it was necessary to seed the environment with
smoke. Mean air velocities in the background, as estimated by PIV measurements,
never exceeded 10 % (for releases J and F this percentage was far lower) of the mean
centreline plume velocity wm and the standard deviation of this fluctuation about
this mean was always less than 0.1wm: equivalent to an actual velocity of 7 cm s−1.
These intensities of background motion are directly comparable with those in previous
plume studies.

3. Mean flow and temperature field

First, we focus on the evolution of mean velocity and buoyancy (temperature). We
examine the radial evolution of the vertical component of the mean velocity and of
the mean temperature. Whilst over 800 velocity profiles were gathered for each release,
plotting all of the data collected was unhelpful in explaining the trends; for this reason
each plot shows 13 radial profiles equally spaced in height and spanning the entire
vertical extent of each experiment. See table 2 for heights and symbols used in these
plots. Mean temperature profiles are given at these same distances from the source.
We discuss the reliability of the assumption of Gaussian profiles (§§ 3.1 and 3.2),
profiles which allow us to readily identify characteristic scales for the plume width,
velocity and buoyancy with height. The analysis of the variation with height of these
local scales (§§ 3.3.1 and 3.3.2) provides first evidence of the dynamical behaviour
of the three releases. To discuss this further, we compute the vertical evolution of
the plume Richardson number Γ (z) by integrating the radial profiles of mean vertical
velocity and temperature (§ 3.3.3). Finally, we discuss the implication of self-similarity
of radial profiles in light of the concept of ‘local self-similarity’ proposed by George
et al. (1977).
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FIGURE 3. (Colour online) Non-dimensionalised radial profiles of time-averaged vertical
velocity in releases (a) J (profiles plotted in the range 9< z/b0<94); (b) F (profiles plotted
in the range 3< z/b0 < 32); and (c) P (profiles plotted in the range 2< z/b0 < 19).

3.1. Radial profiles of mean vertical velocity
From each profile of the measured averaged vertical velocity, w(r, z), a Gaussian
profile centred on r= 0 was fitted to the data. The form of each profile

w(r, z)
wm(z)

= exp
{ −r2

b2
w(z)

}
, (3.1)

is determined by bw, which we define to be the plume width and by wm, the mean
vertical centreline velocity, which, in a quiescent environment, corresponds to the
maximum mean velocity. Due to background air motion and camera positioning
uncertainties (estimated to be ±2 mm horizontally) the maximum mean velocity did
not always perfectly coincide with the axis (r = 0) of the experiment. When this
was the case, the maximum value of w(r) was recorded and the radial coordinate
system locally translated so that wm(z)=w(0, z), so as not to introduce errors in the
determination of the plume radius and the bulk quantities. These adjustments were
never more than ±3 mm.

Figure 3 shows non-dimensionalised radial profiles of mean vertical velocity.
Figure 3(a,b) shows that the mean vertical velocity for plumes J and F exhibit a
clear self-similarity and collapse tightly on to a Gaussian curve. Examination of
figure 3(c) reveals a slightly increased scatter for plume P, compared to cases J
and F. The reasons are twofold. Given the intermediate source Reynolds number,
Re0 ≈ 103, in plume P (table 1), self-similarity of even the mean flow field is not to
be expected in the near-source region. Moreover, the profiles for release P were at
lower non-dimensional distances above the source (see table 1), where the flow was
still influenced by the source profile. However, we verified that the Gaussian function
provided a very good fit to the data, with R2 > 0.95, for z/b0 > 5.

3.2. Buoyancy profiles
The radial profiles of buoyancy are now examined. Figure 4 shows that, albeit with
non-negligible scatter, the buoyancy profiles exhibit approximate self-similarity at all
heights and in all experiments, even close to the source. The near-source behaviour
noted in the velocity profiles is not observed, probably due to the cooling from
the injector walls which resulted in a more pronounced parabolic shape of the
outlet profiles. An identical curve-fitting procedure was used as that described in the
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FIGURE 4. (Colour online) Non-dimensionalised profiles of buoyancy g′/g′m for releases
(a) J, (b) F and (c) P plotted over the same vertical extent as in figure 3.

previous section, with a fit of the form

g′(r, z)
g′m(z)

= exp

{
−r2

b2
g′(z)

}
. (3.2)

The characteristic length scale is now the standard deviation of the Gaussian
buoyancy profiles, denoted bg′ , and the characteristic buoyancy scale is the maximum
centreline buoyancy, g′m. The goodness of the fit with a Gaussian function is lower
than for the velocity profiles, with R2 > 0.95 for releases J and F, and R2 > 0.9 for
release P.

3.3. Vertical evolution of plume dynamics
In order to unravel the dynamical evolution with height of the releases considered, we
plot the vertical evolution of the centreline velocity and buoyancy, the plume radii and
the local Richardson number Γ (z).

To allow for direct comparisons between the different releases and the experimental
data of others, the dynamic quantities are scaled on their source values and all lengths
on the source radius, b0.

3.3.1. Radial growth from velocity and temperature profiles
Figure 5 shows how the normalised plume radius bw/b0 evolves with height. From

this we observe that all three releases tend to spread linearly with height in the far
field, but at different rates.

While in both forced releases, J and F, the radius grows monotonically from very
close to the source, albeit in a less-than-linear fashion, release P exhibits a different
behaviour. The pure plume P appears to be straight-sided over a vertical distance of
approximately 5b0, indicating that entrainment is substantially reduced in this section.

In the same figure we show the vertical evolution of the radius bg′ as estimated
from the temperature profiles; bg′ equals or exceeds bw for all releases and at all
heights. This suggests that the radial turbulent transfer of heat is more effective than
that of momentum. A further discussion on the physical implications of this feature
is provided in § 4.3.

It is worth noting that the estimates of bg′ , as shown in figure 5, are characterised
by a non-negligible scatter: scatter that becomes increasingly visible from release J to
release P, as we ‘zoom in’ the spatial resolution (note the difference in the vertical
axis scale in figure 5a–c). We attribute this scatter to the experimental uncertainties
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FIGURE 5. Comparison of normalised widths of velocity profiles bw/b0 and buoyancy
profiles bg′/b0 with height z/b0 for releases (a) J, (b) F and (c) P. Filled circles denote
bw/b0, hollow circles denote bg′/b0.
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FIGURE 6. Vertical dependency of normalised centreline velocity wm/w0 for the three
releases J, F, P with the pure jet, ∼(z/b0)

−1, and pure plume, ∼(z/b0)
−1/3, power laws.

in temperature measurement which lead to a variability in the estimates of bg′ of
approximately ±5 %. The uncertainty related to bw was approximately ±2.5 %.

3.3.2. Centreline vertical velocity and buoyancy
We plot in figures 6 and 7 the vertical variations of centreline vertical velocity and

centreline buoyancy, showing as a reference their theoretical pure-plume and pure-jet
dependencies, that is wj/w0∼ (z/b0)

−1 and g′j/g
′
m0∼ (z/b0)

−1 in pure jets (Fischer et al.
1979) and wp/w0 ∼ (z/b0)

−1/3 and g′p/g
′
m0 ∼ (z/b0)

−5/3 in pure plumes (Morton et al.
1956).

Figures 6 and 7 highlight a substantial variation in the nature of the velocity decay
with height for the three releases (in figure 6, data for plume P has been shifted to the
left for ease of comparison). Release J, the most jet-like, closely follows the ∼(z/b0)

−1

trend (dashed line) for both wm/w0 and g′m/g
′
m0: the latter for sufficiently large z/b0.
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FIGURE 7. Vertical dependency of normalised centreline buoyancy g′m/g
′
m0 for the three

releases J, F, P, with the pure plume, ∼(z−5/3), and pure jet, ∼(z−1), dependencies.

This data indicates that heat is little more than a passive scalar quantity in this flow
and the source momentum flux completely dominates that induced by the action of
the buoyancy force. This is unsurprising as zmax ≈ LM/3, so the entire experiment is
well within one jet-length of the source.

In release F, fluid decelerates and dilutes at a rate intermediate to the pure jet and
pure plume. Even at a non-dimensional height of z/b0 ≈ 40, the behaviour shows
no appreciable tendency to approach the wm/w0 ∼ (z/b0)

−1/3 and g′m/g
′
m0 ∼ (z/b0)

−5/3

behaviour (dot–dashed line). Experiment F reaches a height of zmax ≈ 2LM and is
therefore entirely within the five jet lengths over which the flow is expected to
exhibit a smooth transition between the near-field jet-like and the far-field plume-like
asymptotic states (Morton 1959; Papanicolaou & List 1988).

As expected, release P exhibits a vertical behaviour that is fully consistent with
the scaling laws of a purely buoyancy-driven plume, with a deceleration of the form
wm/w0 ∼ (z/b0)

−1/3 and a dilution of buoyancy g′p/g
′
m0 ∼ (z/b0)

−5/3.
It is worth noting that figures 6 and 7 show that close to the source, i.e. for z/b065,

all releases dilute and decelerate slowly, suggesting the presence of a non-turbulent
core that, in turn, may be related to a reduced entrainment rate of ambient air.
This tendency is particularly evident in release P. As figure 6 shows, the centreline
velocity increases in release P by up to 20 % over the interval 0. z/b0 . 5; this is a
similar height range to that required for the velocity profiles to exhibit approximate
self-similarity. The near-source acceleration is likely to be due to the relatively low
Reynolds number in the near-source zone which implies a suppression of entrainment
into the plume. In this condition, the unmixed fluid released accelerates due to its
buoyancy. This acceleration persists until the flow becomes sufficiently turbulent to
entrain at a rate consistent with a fully developed turbulent plume, with a radial
momentum transfer that acts to reduce the centreline velocity.
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FIGURE 8. Vertical dependency of plume Richardson number Γ .

This simple analysis of the vertical variation of wm and g′m clearly shows that the
dilution rate with increasing distance from the source varies significantly between the
three cases considered. Therefore, behind an apparent similarity of the radial profiles
of mean velocity and mean buoyancy, the flows develop with different dynamical
behaviours which results in the entrainment of ambient air at different rates.

3.3.3. Plume Richardson number
An estimate of the plume Richardson number, Γ (z) from (1.1), is essential in order

to physically interpret the different behaviour of the three releases.
The plume Richardson number could be estimated at all heights by means of

the mean vertical fluxes of volume, momentum and buoyancy. These fluxes were
explicitly computed by means of the integrals (1.2), fitting the experimental data with
the Gaussian profiles presented in §§ 3.1 and 3.2 and assuming rotational symmetry.
Figure 8 shows this estimate for Γ . Error bars of amplitude 15 %, are associated
primarily with uncertainty in the estimates of bg′ and bw (§ 3.3.1).

Encouragingly, the values of Γ near to the source closely match those in table 1,
indicating that the source Richardson numbers achieved were very similar to those
intended.

As has been customary, in this section we begin with an assessment of releases
J and F; both low Richardson number, high Reynolds number flows at source. As
expected, for both, Γ tends towards unity, release F at an increased rate compared to
J as the theoretical models predict (Hunt & Kaye 2001).

The behaviour of Γ (z) in plume P for small z/b0 may appear surprising, since the
Richardson number slightly ‘overshoots’ unity for z/b0 6 5 – i.e. Γ first increases
above unity and then decreases to unity with height. A similar behaviour can be
observed in the numerical simulation performed by Devenish, Rooney & Thomson
(2010). However, in our case, the ‘overshoot’ has to be attributed to a numerical
artefact associated with the significant errors in the interpolation of the near-source
velocity profiles with a Gaussian curve, and has therefore no physical significance.
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Figure 8 clearly captures the variability of the dynamical state of the three releases
examined. It is worth noting that, although there is considerable dynamical variability,
the mean radial profiles previously examined showed a self-similar profile over the
majority of the rise height. This then provides a clear example of what George (1989)
defines as a ‘local self-preserving flow’, i.e. a flow that appears to scale with local
quantities even though the equations of motion do not admit self-similar solutions,
since any solution should account for the variability of Γ . However, as is evident in
the analysis of the vertical variation of the centreline velocity and centreline buoyancy,
behind this local self-similarity the plumes develop different dynamical behaviour with
height that results, notably, in a different mixing rate with the ambient.

4. Turbulence
The aim here is to use turbulent statistics of the velocity data to illuminate

the discussion that follows in § 5, particularly with regards to the (non-constant)
entrainment coefficient.

4.1. Turbulence intensities
Figure 9 contains plots showing non-dimensionalised radial profiles of second-order
moments of the velocity statistics, namely the vertical and radial turbulence intensities,
Iw= σw/wm and Iu= σu/wm (where σw and σu are the root mean squares (r.m.s.) of the
vertical and radial velocity), respectively. Heights of the radial profiles and symbols
used in these plots are the same as those used for the mean velocities, as specified in
table 2.

For release J, the turbulence intensity (figure 9a,b) exhibits a very good collapse
on to a single curve with the exception of the four lowermost profiles. Neither these
near-source profiles, nor those further from the source, are approximately Gaussian
in contrast to the suggestion of Papanicolaou & List (1988). Rather, the maximum
turbulence intensities are approximately constant within the range |r/bw| < 1 (at
Iu = 0.2 and Iw = 0.25). As the other experimental results demonstrate in due course,
these turbulence intensity profiles are consistent for the three release conditions in
the developed flow field and, what is more, they are consistent with previous data
(Hussein et al. 1994; Shabbir & George 1994; Wang & Law 2002).

Figure 9(c,d) reveal that the lowermost turbulence intensity profiles for release F
differ significantly from the developed profiles. A core of reduced turbulent intensities
centred on the plume axis is clearly identifiable, becoming less pronounced with
height. This appears to correspond to the zone of flow establishment, where the shear
layer which develops on the plume perimeter has not fully penetrated into the plume
interior. The fully developed turbulence intensity profiles approximately match those
in release J. For F and J, the peak values of Iw and Iu show good agreement with the
experimental results for non-buoyant jets of Hussein et al. (1994), namely Iw ' 0.27
and Iu ' 0.22, Shabbir & George (1994), namely Iw ' 0.32 and Iu ' 0.19, and Wang
& Law (2002), namely Iw ' 0.3 and Iu ' 0.2. This confirms one major finding of the
previous results; even though the increased buoyancy within the plume enhances local
turbulence production, the excess of turbulent kinetic energy (t.k.e.) ∝ I2 appears to
be fully scalable with the local variables wm and bw. In other words, the intensity of
the t.k.e. and its spatial distribution within the plume appear to be independent of
the processes that are responsible for its generation, i.e. related to inertial instabilities
or thermal stratification. The concept of local self similarity can therefore also be
extended to the t.k.e. levels within the release.
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FIGURE 9. (Colour online) Non-dimensionalised radial profiles of the normalised
r.m.s. vertical Iw and radial Iu velocities: (a,b) release J (profiles plotted in the range
9< z/b0 < 94); (c,d) release F (profiles plotted in the range 3< z/b0 < 32); (e, f ) release
P (profiles plotted in the range 2< z/b0 < 19).

For release P, plots 9(e, f ) show that for small z/b0 the turbulent intensities are as
low as 5 % inside the plume, indicating a quasi-laminar flow. The core of reduced
turbulent intensity persists over approximately 5 source diameters and is noticeable
in plots of both Iw and Iu. The maximum turbulence intensity is slightly increased
in magnitude compared with the previous, more forced cases. However, this could
be reasonably attributed to the higher scatter in the data and to the role of ambient
turbulence (due to an ambient that is not perfectly quiescent) which increases as
the velocities in the plume are reduced. Similar features can be observed in the
measurements, obtained with the same measurement technique, of Wang & Law
(2002). Their radial profiles of both Iw and Iu exhibit a similar scatter, and a similar
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tendency to approach a value of approximately 0.1 (i.e. non-zero) beyond the plume
borders.

A final remark concerns the fetch needed by the second-order velocity statistics to
become (locally) self-similar. The analysis of the radial profiles of Iu and Iw suggest
that self-similarity is attained between 30 < z/b0 < 35 for release J, 10 < z/b0 < 15
for F and 5 < z/b0 < 10 for P. This observation is in agreement with the idea that
the higher the value of Γ at the source, the more rapid is the transition toward
an asymptotic state of plume equilibrium. However, given the non-identical nozzle
geometry for the three releases and their different source Reynolds numbers, these
relationships between Γ0 and the fetch required to attain self-similarity cannot be
considered to be general values.

4.2. Radial turbulent transfer of momentum and buoyancy
4.2.1. Reynolds stress and turbulent viscosity

Figure 10(a) shows radial profiles of the Reynolds stress ũw̃ (ũ is the fluctuation of
the radial velocity) for the jet-like, high-source-Reynolds-number release J. Evidently,
the Reynolds stress profiles tend towards a single profile at sufficiently high elevation.
The form of the Reynolds stress profile is qualitatively very similar to that published
in the numerical work of Zhou (2001) and with the measurements of Hussein
et al. (1994) in isothermal jets, with a maximum stress value of approximately
|ũw̃/w2

m| ' 0.025. Examination of figure 10(c) for release F leads to the same broad
observations as those above. As in release J, the Reynolds stresses for release F tend
toward a single profile and show profiles very similar to those in figure 10(a). These
observations are in very good agreement with the findings of Wang & Law (2002).

For the nominally pure plume release P, near to the source the Reynolds stresses
(figure 10e) are negligible and approximately constant across the plume. However,
with increasing distance from the source, the profiles begin to converge towards a
self-similar profile which is similar in form to release F.

The high spatial resolution of the velocity statistics gathered allows us to achieve
an experimental estimate of the turbulent viscosity, usually defined as

νT(r, z)=−ũw̃(r, z)
/(

∂w(r, z)
∂r

)
. (4.1)

This quantity provides potentially important information concerning both the
turbulence dynamics and the momentum transfer within the plume. The curves
for the corresponding non-dimensional turbulent viscosity ν̂T = νT/(wmbw) are shown
in figure 10. Near the plume axis, the small Reynolds stress is divided by a small
velocity gradient which explains why the turbulent viscosity peaks here. In the two
releases characterised by high Reynolds number, namely J and F, the radial profiles of
ν̂T (figure 10b,d), although scattered, tend towards a single profile at sufficiently high
elevations that is similar to that identified by Hussein et al. (1994) for non-buoyant
jets. This confirms that the momentum transfer within the releases is almost unaffected
by buoyancy, as are the t.k.e. levels (see § 4.1), in the sense that any variation can
be fully rescaled on local quantities leading to the same local self-similar curves.

It is questionable whether the values of ν̂T in release P (figure 10f ) genuinely
exceed those of the other plumes. Non-dimensional profiles are far from collapsing
on to a single curve (and the data is affected by significant scatter) which indicates
the varying dynamical nature of the plume with height. Despite this, several profiles
show a qualitative tendency that is very similar to that observed for releases J and F.



592 A. Ezzamel, P. Salizzoni and G. R. Hunt

(a) (b)

–2 –1 0 1 2

–0.02

0

0

0

0.02

–0.04

0.04

–2 –1 0 1 2
0

0.05

(c) (d )

–2 –1 0 1 2

–0.02

0.02

–0.04

0.04

–2 –1 0 1 2
0

0.05

(e) ( f )

–2 –1 0 1 2

–0.02

0.02

–0.04

0.04

–2 –1 0 1 2
0

0.05

FIGURE 10. (Colour online) Radial profiles of non-dimensional Reynolds stress (a,c,e)
and non-dimensional turbulent viscosity ν̂T = νT/(wmbw) (b,d,f ) for (a,b) release J (profiles
plotted in the range 9 < z/b0 < 94), (c,d) release F (profiles plotted for 3 < z/b0 < 32)
and (e, f ) release P (profiles plotted for 2< z/b0 < 19). The continuous (red online) line
represents the fit of the experimental data of Hussein et al. (1994) in a non-buoyant jet.

We can therefore conclude that evidently there is no one-to-one dependence of ν̂T

on Γ , i.e. that the increased role played by buoyancy in the dynamics as Γ increases
does not necessarily result in a more effective turbulent radial transfer of momentum
as is consistent with an increase in ν̂T . Just as for the other turbulent quantities
examined, variations in the turbulent viscosity can be completely rescaled by local
quantities confirming the ‘local’ self-similar behaviour.

To unravel the influence of Γ on the radial turbulent transfer of momentum it
is instructive to examine the vertical evolution of a non-dimensional bulk turbulent
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FIGURE 11. Vertical evolution of the non-dimensional bulk turbulent viscosity 〈ν̂T〉 for
releases J, F and P.

viscosity 〈ν̂T〉, representing a spatial average of ν̂T over the plume section. Values
of 〈ν̂T〉 were estimated as those giving the best agreement on fitting the ũw̃ profiles
with a function of the form

F (r, z)= 2〈ν̂T〉 r
2

b2
w

exp
r2

b2
w

(4.2)

i.e. assuming the Gaussian form of the velocity profile (3.1). The vertical evolution
of 〈ν̂T〉 plotted in figure 11 sheds light on the influence of a varying Γ on the
plume dynamics. Despite a non-negligible uncertainty in the estimate of 〈ν̂T〉, which
is reflected in error bars of 10–25 %, figure 11 depicts a clear tendency in its vertical
evolution for the three releases considered. The quantity 〈ν̂T〉 evolves with height
up to a far-field value of approximately 0.035 in all three cases, as could also be
inferred by examining figure 10(b,d,f ). It is however evident that the enhanced role of
buoyancy in the plume dynamics accelerates significantly this evolution. As a result,
for release J, 〈ν̂T〉 requires a distance of almost 100 radii to attain its far-field value.
By contrast, for release P the evolution to the far-field value occurs over a fetch of
approximately 10b0. As discussed in § 5, this feature plays a major role in the way
the different releases entrain ambient air.

4.3. Turbulent Prandtl number
An experimental estimate of the radial turbulent transfer of heat (or mass) requires
simultaneous measurement of velocity and temperature (or solute concentration c)
in order to assess the radial variability of the correlation between fluctuations of
temperature T̃ (or concentration c̃) and radial velocity. Just as for the momentum
transfer, the adoption of a gradient closure model of the form (4.1), leads to an
estimate of a turbulent diffusivity of heat (or mass) DT , and therefore to the turbulent
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Prandtl (or Schmidt) number PrT = νT/DT , that characterises the relative effectiveness
of the two transport phenomena.

This kind of simultaneous measurement has seldom been undertaken and represents
a major challenge in the experimental investigation of buoyant plumes. Shabbir &
George (1994) performed these measurements in air plumes with hot-wire anemometry.
Despite the remarkable experimental effort however, the radial profiles of ũT̃ presented
in their study were affected by a considerable scatter, showing the limitations of wire
anemometry in evaluating the variation of ũT̃ for varying dynamical plume conditions.
Far smoother profiles were obtained by means of optical techniques in saline plumes
by Papanicolaou & List (1988) and Wang & Law (2002). Both papers report profiles
of ũw̃ and ũc̃ in jets and plumes with similar results. Far-field profiles of ũw̃/w2

m

were insensitive to enhanced buoyancy, whereas ũc̃/wmcm showed a clear tendency
to be higher in plumes compared with jets. Papanicolaou & List (1988) found that
ũc̃/wmcm ' 0.12 in jets and ' 0.25 in plumes, whereas Wang & Law (2002) found
ũc̃/wmcm' 0.15–0.2 in jets and ' 0.25–0.3 in plumes. Both studies indicate a general
tendency of PrT to decrease as Γ increases.

Given the difficulty associated with the direct estimation of PrT , several authors
could only infer its spatial average (over the plume section) by estimating the ratio
ϕ = bg′/bw between the local spread of the buoyancy and velocity profiles. Assuming
Gaussian profiles, the (spatially averaged) turbulent Prandtl number can be estimated
as

〈PrT〉 = ϕ−2, ϕ = bg′

bw
. (4.3)

It is worth noting that the values for ϕ in the open literature show a high variability.
For example, Papanicolaou & List (1988) find ϕ = 1.19 in nominally pure plumes.
Their estimates are consistent with their direct measurements of the radial turbulent
fluxes of momentum and mass, and indicate that the spread of buoyancy exceeds that
of the velocity owing to turbulence radially transferring buoyancy more effectively
than momentum. However, experiments of other researchers on buoyancy-dominated
plumes, including George et al. (1977) and Nakagome & Hirata (1977), led to the
contradictory conclusion that ϕ<1. This unexplained contradiction in the experimental
results is particularly evident in the study of Wang & Law (2002). Their measurements
indicate that ϕ decreases with increasing Γ , from a value of approximately 1.25 for
a pure jet close to the source, toward unity for a pure plume in the far field. We
stress here that this decrease is in contrast to the results of Papanicolaou & List (1988)
and with Wang & Law’s own experimental results, results that showed a tendency for
ũc̃/wmcm to increase with Γ .

The ratio ϕ, as a function of the normalised distance from the source, obtained from
the estimates of bg′ (±5 %) and bw (±2.5 %) (see § 3.3.1 for details) is plotted in
figure 12. A cursory examination clearly shows that the width of the error bars on ϕ
are of the same order as its variation over the plume’s vertical extent. This feature
highlights a striking difference between the vertical evolution of ϕ (and PrT) and that
of 〈ν̂T〉 (see figure 11) and Γ (see figure 8); while the trends in 〈ν̂T〉 and Γ are clear,
the precise trend in ϕ is less clear.

Beyond this general uncertainty one could argue that there is a tendency in releases
J and F for ϕ to increase with height. For release P the values of ϕ are higher
although it is difficult to discern a clear trend. In all three cases, ϕ tends to a far-field
value slightly higher than 1.2, which corresponds to 〈PrT〉= 1/1.22' 0.7: a result that
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FIGURE 12. Vertical evolution of ϕ = bg′/bw for releases J, F and P.

supports the findings of Papanicolaou & List (1988) and Panchapakesan & Lumley
(1993) who found ϕ ≈ 1.2 for pure plumes.

Kaminski, Tait & Carazzo (2005) suggested that the considerable discrepancy
reported in the literature in the values of ϕ could be explained by the distance
from the source at which profiles were measured. They noticed that researchers who
obtained ϕ < 1 acquired data close to the source (z/b0 ∼ 10), whereas measurements
further away (z/b0 ∼ 100) resulted in ϕ > 1. Kaminski et al. (2005) plotted the
parameter A = (2/3)(ϕ2 + 1) against z/b0, which varied from approximately A = 1.1
for z/b0 6 10 to approximately A = 1.9 for z/b0 ' 100. This led them to conclude
that ϕ increases slowly with height, with typical values of ϕ < 1 in the near field and
ϕ ' 1.36 (〈PrT〉 ' 0.56) in the far field. They referred to this evolution in the value
of ϕ as ‘similarity drift’.

Our data plotted in figure 12 partially supports their assertion. For releases J and F,
ϕ shows a tendency to increase with z/b0 to attain slightly higher values compared
with those reviewed by Kaminski et al. (2005). In contrast, the data for release P
suggests a tendency of ϕ to decrease with height, a tendency that is not consistent
with ‘similarity drift’. As already mentioned, a similar anomalous (with respect to the
‘similarity drift’ model) decrease of ϕ can be observed in the data of Wang & Law
(2002). In the present case however, it is worth noting that this tendency is captured
only over a limited vertical range from the source, since zmax/b0 = 19 for plume P,
and is inconclusive given the significant amplitude of the error bars. We therefore
conclude that our data agrees partially with the concept of ‘similarity drift’ and that
the non-negligible uncertainty in the estimates of ϕ does not bring to an end this
controversy.

However, our experimental results highlight two important features that concern the
nature of this ‘drift’. These warrant discussion as they could help in explaining the
wide spread of the literature data. First, whilst at the outset it may have been tempting
to examine the variation of ϕ with Γ , we cannot identify any clear one-to-one
relationship between them, and therefore between PrT and Γ (or indeed between 〈ν̂T〉
and Γ ). Second, for two of the releases we observed a tendency of ϕ to increase.
These aspects suggest that the evolution of 〈ν̂T〉 and ϕ is similar. From the nozzle
the flow develops seeking its equilibrium state, with a near-field evolution whose
rapidity is influenced by Γ . Therefore, at a given distance from the source, a forced
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plume can exhibit varying ϕ depending on its Γ0 ( just as it can exhibit different
〈ν̂T〉), which explains the variety of values presented in the literature.

There is another reason that can potentially explain this variability. In their analysis,
Kaminski et al. (2005) refer to data from 9 different experimental data sets; 5 of
these refer to measurements taken between 10 and 30 radii from the source. It is
well known from the literature data, and as discussed in §§ 4 and 4.2.1, that in this
region intermediate to near field and to far field, the flow has not necessarily reached
conditions for self-similarity. The region of the ‘drift’ is therefore, at least partially,
a region within which the flow retains some memory of its source state. We cannot
then exclude that the observed variability of ϕ is due to the influence of the source
conditions (conditions that cannot be perfectly controlled by the experimentalist)
on the subsequent evolution of the flow dynamics. It is customary to refer to the
source condition as given by steady and self-similar radial profiles of velocity and
temperature (or concentration), so that we can fully characterise the release by
the governing parameters: Γ0, Re0 and T0/Te. The actual source flow conditions
reproduced in an experiment (or in a numerical simulation) may, however, exhibit
non-negligible departures from these idealised reference conditions. This can be due,
for example, to a different form of the velocity and temperature profiles, to non-null
intensities of the turbulent fluctuations or of the Reynolds stress. Thus, for identical
values of Γ0, Re0 and T0/Te (defined by means of spatially averaged quantities), we
can then have a variety of source conditions; these can exert their influence over a
distance of several source diameters (see figure 8), along which the release evolves
toward a condition of dynamical equilibrium and may exhibit a high variability of the
local Γ . We stress that, if the uncertainties associated with the conditions imposed at
the source do indeed have a significant influence on the near-field plume behaviour,
it would be unclear how to dissociate them from the dependence of flow variables,
such as ϕ (or αG), on the local variation of Γ (or Re).

4.4. Turbulence structure
To provide further information on the turbulence dynamics we investigated its spatial
structure by computing two-point velocity correlations throughout the domain. We
focus here on the two-point correlation functions Ruu and Rww of the vertical and
radial velocity components, defined as

Ruu(x0, s)= ũ(x0)ũ(x0 + s)
σ 2

u (x0)
(4.4)

Rww(x0, s)= w̃(x0)w̃(x0 + s)
σ 2

w(x0)
(4.5)

where x0 is any point in the domain, s is a displacement relative to x0 and
the ensemble averaging is performed over the 3000 instantaneous velocity field
measurements.

The integral over s of the functions (4.4) and (4.5) gives a length scale, referred to
as an Eulerian integral length scale, which is representative of the maximal distance
over which the velocities are correlated and, thus, provides an indication of the scale
of an eddy. As an example we have plotted, in figures 13 and 14, isolines of Ruu and
Rww for releases F and P, computed on the centreline at the same non-dimensional
distance from the source (z/b0 = 15). Two main features are shown. First, a clear
anisotropy of the turbulent field is evident with vertical velocity correlations that are
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FIGURE 13. Correlation coefficient Ruu = (ũ(x0)ũ(x0 + r))/σ 2
u computed on the centreline

at z/b0 = 15 for release: (a) F and (b) P. Isolines vary from 0.8 for the inner contour to
0.3 for the outer.

(b)(a)

–1 0 1

14

15

16

14

15

16

–1 0 1

FIGURE 14. Correlation coefficient Rww= (w̃(x0)w̃(x0 + r))/σ 2
w computed on the centreline

at z/b0 = 15 for release: (a) F and (b) P. Isolines vary from 0.8 for the inner contour to
0.3 for the outer.

considerably larger than their horizontal counterparts and with higher correlations.
Second, the correlations for release P are higher than for release F. The influence of
buoyancy in marginally widening (figure 13) and in elongating (figure 14) the eddy
structure is immediately evident.

In order to quantify these differences and investigate the spatial variation of the
Eulerian integral length scales we have attempted to estimate typical correlation
distances over the whole domain. To that end, we have assumed that the two-point
correlation functions can be modelled as an exponential function. Accordingly, we
fitted the vertical and horizontal sections of Ruu and Rww with functions of the form

f (r)= exp{−r/Luu} (4.6)
f (z)= exp{−z/Lww}. (4.7)

Values of the parameters Luu and Lww, fitting this exponential curve to the data,
provide a measure of a radial and a vertical integral length scale, respectively. The
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FIGURE 15. (Colour online) Radial profiles of the integral length scales, horizontal scale
Luu and vertical scale Lww, non-dimensionalised on plume width, bw, for (a,b) release J
(profiles plotted in range 9 < z/b0 < 94), (c,d) release F (profiles plotted in range 3 <
z/b0<32) and (e, f ) release P (profiles plotted in range 2< z/b0<19). The continuous line
indicates the experimental estimates by Wygnanski & Fiedler (1969) for a non-buoyant jet.

resulting non-dimensional integral length scale profiles are shown in figure 15 and are
compared with the results of Wygnanski & Fiedler (1969) for non-buoyant releases.

This data highlights the anisotropy of the large-scale turbulent motion, as the
vertical length scale, Lww, is 1–3 times larger than the radial scale Luu. Results
bolster the findings of § 3 showing that approximate self-similarity of the profiles is



Dynamical variability of axisymmetric buoyant plumes 599

achieved for each of the three release conditions. The local self-similar behaviour,
however, differs slightly from release J to release F, and markedly from release P.
Data for J and F agrees well with Wygnanski & Fiedler’s (1969) measurements of
non-buoyant plumes showing, once again, that the effect of an excess of buoyancy on
the plume dynamics can be fully re-scaled by local quantities, thereby indicating a
local self-similarity of the flow, characterising even the local turbulence structure. The
only difference that can be observed between releases J and F is the slightly higher
values of non-dimensional Lww towards the perimeter of release F. Conversely, a clear
departure from this self-similar behaviour can be observed for plume P, which is also
characterised by higher values of both Luu and Lww compared with the others. This
departure from self-similarity can be reasonably attributed to two features. First, to
the vorticity production by the baroclinic torque, whose effect is enhanced for higher
Γ . This produces a coalescence of vortices that extends, both laterally and vertically,
the larger eddies within the plume. Second, the higher values of Luu observed for
higher Γ can be also attributed to the meandering that characterises the morphology
of release P: meandering that was hardly detectable in releases J and F.

5. Entrainment coefficient
Finally, we focus on the rate of entrainment. Our aim is twofold. First, we aim

to quantify the apparent differential entrainment coefficient evidenced by the vertical
profiles of centreline buoyancy examined in § 3.3.2. Second, in light of the analysis
of the flow structure performed so far, we aim to shed light on the dynamical causes
of this variation.

The entrainment coefficient αG= ue/wm is defined as the ratio of two velocities, the
entrainment velocity ue and the mean centreline vertical velocity, and represents the
simplest way to close the volume flux conservation equation:

dQ
dz
= 2πbwue = 2πbwαGwm. (5.1)

Although widely and successfully applied to many problems of practical interest
(Turner 1986), this form of turbulence closure that attempts to capture the turbulent
process, by which ambient fluid is entrained across the shear layers forming the plume
boundary and into the plume, is nonetheless a rather crude model of a complex
physical phenomenon. Many researchers have attempted to infer the entrainment
coefficient from experimental observations (Turner 1986) as it is central to plume
theory. A major problem in the experimental estimates of αG reported in the literature,
for both jets and plumes, is the consistent scatter in the data. A comprehensive
review of the estimates of the entrainment coefficient provided by previous authors is
presented by Linden (2000) and by Carazzo, Kaminski & Tait (2006). For Gaussian
profiles, the entrainment coefficient is in the range 0.045 < αj < 0.056 in pure
momentum-dominated jets and 0.07< αp < 0.11 in pure buoyancy-dominated plumes
(Carazzo et al. 2006). Whilst this variability remains only partially explained it can, in
part, be attributed to different conditions at the source, the nozzle geometry, or to the
different experimental techniques deployed. In addition to this uncertainty, however,
we can expect that buoyant plumes produce different entrainment rates according to
their local dynamical condition. Assuming fully-turbulent plumes with relatively low
density differences, we may therefore expect the dynamics of the entrainment process
to depend on the plume Richardson number Γ . Previous authors have tried to define
the functional dependence of αG on Γ , or to equivalent non-dimensional parameters
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FIGURE 16. Entrainment coefficient αG plotted against local plume Richardson number
Γ . Experimental data of the present study refers to release J (E), F (+) and P (�). The
grey shaded area represents estimates based on the Priestley & Ball model (5.2) assuming
an upper and lower bound provided by maximal and minimal entrainment values for jets
and plumes from the literature data (see the text). Experimental data from Wang & Law
(2002) is referred to as W&L.

(the Froude number). Among these, we cite the semi-empirical model derived from
the theoretical analysis of Priestley & Ball (1955)

αG(Γ )= αj + (αp − αj)Γ, (5.2)

which assumes a linear variation between two asymptotic values (determined
experimentally) for a pure jet αj and a pure plume αp. Then 50 years later Kaminski
et al. (2005), following Priestley & Ball (1955), proposed a formulation of the
entrainment coefficient based on a mean kinetic energy budget, and that includes
explicitly the direct contribution of the variation of Γ on αG.

The entrainment coefficient is computed herein from the PIV velocity estimates
of the mean vertical volume flux Q(z). To avoid scatter in the data due to spatial
discretisation, prior to determining its derivative, the volume flux variation with height
was fitted by means of a sixth-order polynomial, and thereafter αG estimated from
(5.1). Results are shown in figure 16, where we plot the entrainment coefficient for
the three releases as a function of Γ . We have excluded only the data of release P
for z/b06 5, data that was highly affected by the non-fully turbulent condition of the
flow, as widely discussed in §§ 3.3.1, 3.3.3 and 4.

Results are compared with the model of Priestley & Ball (1955) discussed above
and with experimental results reported by Wang & Law (2002). To the best of the
authors’ knowledge, Wang & Law (2002) provide the only experimental estimate
of the entrainment coefficient as a function of the local Richardson number in
the literature. The data of Wang & Law (2002) was originally plotted against
a non-dimensional parameter, denoted here as Fr, which is related to the plume
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Richardson number via Γ = Fr2(5/(27/2√παref )). Wang & Law (2002) estimated Fr,
taking also into account the turbulent fluxes of buoyancy and momentum, which are
neglected in (1.1). Since the turbulent fluxes constitute approximately 20 % of the
total buoyancy flux and 10 % of the total momentum flux, neglecting these leads
to overestimates of Γ of approximately 5 %. The outcome of the Priestley & Ball
(1955) model is plotted assuming the two limits for both asymptotic values of αG
identified by Carazzo et al. (2006), i.e. αj = 0.045 and αj = 0.056 for Γ → 0, and
αp = 0.07 and αp = 0.11 for Γ → 1.

As a general remark we note that our estimates show a clear tendency for αG to
increase with Γ . For the condition of a ‘highly forced plume’, Γ → 0, our αG tends
to be slightly lower than that in the literature for jets. For increasing Γ , our results
show generally good agreement with the lower bound defined by the semi-empirical
model of Priestley & Ball (1955). Across the whole range of forced plume conditions
0 < Γ < 1, our estimates are systematically lower than those provided by Wang &
Law (2002). This discrepancy is significantly reduced for pure plume conditions. In
addition, our estimates show good agreement with the other literature on pure plumes,
in particular the PIV estimates by Pham et al. (2005) within a thermal plume rising
above a heated plate.

To help explain the differences between our estimates of αG and the estimates
of Wang & Law (2002), as well as the differences in αG in our own data at a
given value of Γ (i.e. for releases J and F for 0.06 < Γ < 0.2) we turn to the
expression developed by Kaminski et al. (2005) for the entrainment coefficient.
Following recent developments proposed by Craske & van Reeuwijk (2014) for the
analysis of unsteady jets, we adopt a formulation that makes no assumption about
the slenderness of the flow. In particular, this allows us to quantify the behaviour of
the entrainment in the very near field, where the usual assumption of ‘thin plume’
(negligible vertical gradients of second-order statistics compared with radial gradients)
does not necessarily hold. Assuming that the radial profiles of velocity and buoyancy
are well approximated by a Gaussian, even close to the source (as we verified in
§§ 3.1 and 3.2), and adopting a simple gradient-law closure to model the Reynolds
stress, the entrainment coefficient can be expressed as

αG = (2ϕ2 − 1)
2αref

5
Γ + 3

2
〈ν̂T〉 + αnf − αm (5.3)

where

αnf = 3bwI7 − 2bw
dI6

dz
, (5.4)

αm = 2bwI6
d
dz

ln
(
b2

ww2
m

)
, (5.5)

and where I6 and I7 are related to integrals of radial profiles of second-order velocity
statistics. Details on the derivation of (5.3) are provided in the appendix A.

The formulation of the entrainment coefficient (5.3) helps to clarify the role of
the different terms in the entrainment process and their physical meaning. The first
term (2ϕ2 − 1)(2αref /5)Γ reflects the effect of the radial gradient of hydrostatic
pressure, induced by the presence of a column of warm air, in drawing ambient
air into the plume. This term is therefore related to the mean radial velocity field.
The second term (3/2)〈ν̂T〉 is directly linked to the local production of t.k.e. by
inertial instabilities (Kaminski et al. 2005), i.e. to the product of Reynolds stress
and mean vertical velocity radial gradient. It is therefore related to the fluctuating
component of the velocity field. The remaining two terms, originally neglected by
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Kaminski et al. (2005), are both related to the t.k.e. production and to the vertical
mean kinetic energy transfer (and thereby related to the vertical gradient of the first-
and second-order velocity statistics). The term αnf tends to zero in the far field, as
the second-order velocity statistics attain self-similarity and therefore plays a role
only in the very near field. The term αm tends to zero in the far field only in pure
jets, Γ = 0, as the mean momentum flux maintains a constant value. Its contribution
however is non-null for buoyant releases. It is instructive to evaluate the magnitude
of αm in the case of a nominal pure plume, i.e. Γ ≈ 1. Considering simple scaling
relations for a pure plume, i.e. b2

ww2
m ∝ z4/3 and bw ∝ (6/5)αref z, and estimating the

integral I6' 0.05 from our experimental data, we can estimate αm' 1.6× 10−2, which
represents a contribution of approximately 10 % to the total entrainment.

As pointed out in appendix A, it is worth noting that, under the assumption of
Gaussian radial profiles of mean vertical velocity and temperature, the contribution
to αG given by the ‘drift term’ and pointed out by Kaminski et al. (2005) vanishes,
even in the case of a varying ϕ.

A systematic comparison of estimates of the entrainment coefficient obtained from
(5.1) with those from (5.3) offers a means to explain the variability of αG = αG(Γ )

shown in figure 16.
First, we analyse the Wang & Law (2002) data. Their estimates of αG are obtained

for releases with 0.01 < Γ0 < 0.1 and in the range 60 < z/b0 < 110. In contrast to
us, Wang & Law (2002) focus on the far-field region, i.e. where 〈ν̂T〉 is expected to
have reached its asymptotic value, and where the second-order statistics have clearly
already attained a condition of self-similarity, so that the contribution of the term αnf

is null. An examination of their Reynolds stress and mean velocity vertical profiles
suggests 〈ν̂T〉 ' 0.35, which leads to values of the parameter C = (3/2)〈ν̂T〉(ϕ2 + 1)
(see appendix A) in the range 0.12 < C < 0.14 (Kaminski et al. 2005). This value
of 〈ν̂T〉 corresponds approximately to the same value as observed in the far field of
all three releases examined here (see figure 11). Over a similar range of distances
from the source Wang & Law (2002) data exhibits a decrease of ϕ, from a near-field
value of 1.25 down to 1.05 in the far field. As a first approximation, we neglect the
contribution of αm in (5.3), and estimate the entrainment coefficient as

αG ' (2ϕ2 − 1)
2αref

5
Γ + 3

2
〈ν̂T〉. (5.6)

On imposing 〈ν̂T〉 = 0.35 we plot αG from (5.6) for ϕ = 1.05, 1.15 and 1.25. As
is clear from figure 17, the tendency of αG = αG(Γ ) from Wang & Law (2002) can
be fully reproduced by (5.6) with ϕ = 1.05. For Γ > 10−1 we note that entrainment
responds sensitively to ϕ, with variation of ϕ less than 10 % inducing considerable
variation in αG. As a consequence of this sensitivity, the actual variation of ϕ with
height in the Wang & Law (2002) experiments, that we have here neglected, is likely
to alter the close agreement seen. However, a detailed estimate of all terms in (5.3)
for the Wang & Law releases is clearly beyond the scope of the present study and
requires further information on the velocity statistics, specifically those related to the
term αm. Our aim here is only to demonstrate that the estimates of αG provided by
Wang & Law (2002) are consistent with the plume dynamics in the far field, where
both ϕ and 〈ν̂T〉 have reached their asymptotic values: values that closely match their
experimental estimates.

Second, we focus on our three releases J, F and P. The measurements gathered
during our experimental campaign allow for a direct estimate of all terms comprising
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FIGURE 17. (Colour online) Entrainment coefficient αG plotted against local plume
Richardson number Γ . Experimental data from Wang & Law (2002) and estimates of the
formulation of Kaminski et al. (2005) given by (5.6) for a fixed 〈ν̂T〉 = 0.035 and three
different values of ϕ (see text).

αG in (5.3). However, an estimate of the terms in αnf , involving vertical derivatives
of second-order velocity statistics, is characterised by a large uncertainty due to
an insufficient number of sampled velocity fields. Accurate estimates of these terms
would require a number of samples of at least an order of magnitude larger. For these
reasons, in estimating αG by means of (5.3), we consider as a first approximation,
αnf = 0 which we expect to lead to underestimations of αG in the near field.

Since release P exhibits almost no variation of Γ , the evolution of the estimates of
αG provided by (5.1) and (5.3) shown in figure 18 is plotted against z/b0, rather than
against Γ . Estimates from (5.3) are shown for all three releases with 20 % error bars,
evaluated taking into account the uncertainties related to Γ (figure 8), 〈ν̂T〉 (figure 11)
and ϕ (figure 12).

For releases J and F, estimates from (5.3) tend to systematically underestimate those
from (5.1) in the near field. This can be explained by the neglected contribution of
αnf . Even in the case of plume P, the two estimates of αG differ significantly in
the near field. This difference can primarily be attributed to the non-fully turbulent
condition of the plume for z/b0 < 5, conditions that invalidate the formulation of
(5.3). Discrepancies in the near-field region can also be attributed to the two features
discussed in § 2, i.e. eventual non-Boussinesq effects and the thermal stratification of
the ambient very close to the source (in a region that extends up to z/b0∼6 for release
J, z/b0 ∼ 2 for F and z/b0 ∼ 2 for P). Both features are not accounted for in the
formulation of (5.3). However, despite the non-negligible extent of the error bars, we
observe a relatively good agreement between the two estimates for releases J, F and
P. This allows us to interpret the physical variation of αG with z/b0 as given by the
variations with z/b0 of the terms on the right-hand side (r.h.s.) of (5.3) and to shed
light on the role of Γ in the intensity of the entrainment of ambient air. Focusing on
the first two terms on the r.h.s. of (5.3), terms that represent the highest contribution
to the total entrainment, we may assert that the role of Γ is twofold: directly through
term (2ϕ2 − 1)(2αref /5)Γ and indirectly through the vertical evolution of 〈ν̂T〉.
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FIGURE 18. Variation of entrainment coefficient as a function of distance from source.
Comparison of entrainment coefficient estimated from the volume flux balance equation
(5.1) and from the formulation (5.3) for releases (a) J, (b) F and (c) P.

The relatively low values of αG in the near field of releases J and F can then be
fully explained by the corresponding low values of 〈ν̂T〉 (figure 11). Moving away
from the source, Γ → 1 and the contribution of 〈ν̂T〉 to αG increases (at a rate that
depends on Γ ) as does the direct contribution of the term including Γ . As widely
discussed in § 4, a buoyant release can exhibit different 〈ν̂T〉 and ϕ for a given Γ ,
depending on the release conditions and distance from the source. This explains why,
in general, a plume can exhibit a different value of αG for the same local Γ and
provides, in this particular case, a robust justification for the differences observed
between our estimates of αG and those reported by Wang & Law (2002). This feature
is also likely to explain the high variability of values of the entrainment coefficient
reported in the literature.

6. Summary of findings
We have presented a highly resolved set of velocity and temperature measurements

carried out on three turbulent plumes of source Richardson number (1.1) in the range
10−2 < Γ0 < 1. These measurements have been used to assess local dynamical self-
similarity, to confirm the evolution of key dynamic quantities, to investigate the large
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scale structure of the flow and the variability of the rate of entrainment with height
from the source.

Despite a variable local dynamical condition, characterised by a varying plume
Richardson number Γ , the radial profiles of the mean and of the r.m.s. of the velocity
components can be rescaled on local quantities, namely the mean centerline velocity
wm and the mean plume radius bw, to yield self-similar profiles for the flow variables
for a wide range of distances from the source. This local self-similarity applies also to
the mean temperature (buoyancy) profiles and to the turbulent viscosity ν̂T , showing
that even the increased radial turbulent momentum transfer induced by an excess of
buoyancy can be fully rescaled by local quantities. Even the Eulerian length scales
Luu and Lww appear to rescale locally when normalised with the plume radius. In
contrast to the other flow variables however, the local self-similar function describing
the spatial evolution of the Eulerian length scales differs significantly depending
on Γ .

The influence of Γ on the turbulence dynamics within each release was studied
by focusing on the evolution of radial profiles of second-order velocity statistics and
estimating bulk quantities, including the spatially averaged turbulent viscosity 〈ν̂T〉 and
ϕ= bg′/bw which is directly linked to the spatially averaged turbulent Prandtl number.
Summarising, our results show that:

(a) the higher the value of Γ , the lower is the fetch required for second-order
statistics to attain local self-similarity;

(b) the higher the value of Γ , the more rapid the rate of increase of 〈ν̂T〉 toward its
asymptotic value;

(c) the influence of Γ on ϕ is likely to be similar to the influence of Γ on 〈ν̂T〉,
but this effect is difficult to unequivocally confirm, given the vertical variation of
ϕ exhibited by a buoyant release is comparable with the uncertainty associated
with its experimental estimate;

(d) neither 〈ν̂T〉 nor ϕ do not show a one-to-one dependence with Γ , since their
magnitude depends, at least in a region of flow transition, also on the distance
from the source.

The study culminated with an analysis of the influence of Γ on the rate of
entrainment of ambient air as quantified by the entrainment coefficient αG. Two
distinct experimental estimates of αG were obtained. The first by estimating the
vertical variation of the volume flux. The second adopting a formulation of αG

similar to that originally proposed by Kaminski et al. (2005), and that makes explicit
the role of the main non-dimensional parameters governing the dynamics of the
plume, i.e. Γ , 〈ν̂T〉 and ϕ. In this way we could fully explain the observed variations
of αG in the three releases studied as well as in the existing literature data, depending
on Γ and on the distance from the source.

Our analysis shows that it is not possible to identify a one-to-one dependence of αG

on Γ , since its variations are due also to changes in 〈ν̂T〉 and ϕ, whose magnitude,
for a given Γ depends on the distances from the source and the value of Γ at the
source.
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Appendix A

Following the analysis undertaken by Craske & van Reeuwijk (2014) on unsteady
jets, we present an extension of the model of Kaminski et al. (2005). For clarity, the
notation will be kept as similar as possible to that adopted by Kaminski et al. (2005).
We begin by writing the steady balance equations for mass, momentum and buoyancy
in cylindrical coordinates under the Boussinesq approximation and assuming negligible
viscous effects:

∂rw
∂r
+ ∂ru
∂r
= 0,

∂

∂z
(rw2)+ ∂

∂r
(ruw)= rg′ − ∂

∂r
(rũw̃)− 1

ρe

∂

∂z
( pr)− ∂

∂z
(σ 2

wr),

∂

∂z
(rwg′ + rw̃g̃′)+ ∂

∂r
(rug′ + rũg̃′)= 0,





(A 1)

where p represents the difference from hydrostatic pressure pe = ρegz. In contrast
to Kaminski et al. (2005), equation (A 1) includes the vertical derivatives of σ 2

w and
pressure. Since the pressure distribution is difficult to measure, its vertical gradient
is usually modelled as (Hussein et al. 1994; Shabbir & George 1994; Wang & Law
2002)

− ∂p
ρe∂z
≈ ∂(σ

2
u + σ 2

v )

2∂z
≈ ∂σ

2
u

∂z
, (A 2)

where σv denotes the standard deviation of the azimuthal velocity component.
By combining mass and momentum balances, we can write the mean kinetic energy

balance as

∂

∂z

(
1
2

rw3

)
+ ∂

∂r

(
1
2

ruw2

)
= rwg′ −w

∂

∂r

(
rũw̃
)
−w

∂

∂z

(
σ 2

w − σ 2
u

)
r. (A 3)

The balance equations (A 1) can be integrated over r, from 0 to ∞, assuming as
boundary conditions that limr→∞ ruw= limr→∞ rũw̃= limr→∞ rug′ = limr→∞ rũg̃′ = 0,
so that

d
dz

∫ ∞

0
rwdr=− [ru]∞0 ,

d
dz

∫ ∞

0
rw2dr=

∫ ∞

0
rg′dr− d

dz

∫ ∞

0

(
σ 2

w − σ 2
u

)
rdr,

d
dz

∫ ∞

0
(rwg′ + rw̃g̃′)dr= 0,

d
dz

∫ ∞

0

1
2

rw3dr=
∫ ∞

0
rwg′dr+

∫ ∞

0
rũw̃

∂w
∂r

dr−
∫ ∞

0
rw
∂

∂z

(
σ 2

w − σ 2
u

)
dr.





(A 4)
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As in Kaminski et al. (2005), the mean and variance of the vertical velocity, the
mean buoyancy and the Reynolds stress are expressed by shape functions:

w(r, z)=wm(z)f (r, z),
g′(r, z)= g′m(z)h(r, z),

ũw̃=− 1
2 wm(z)2j(r, z),

σ 2
w − σ 2

u = 1
2 w2

ml(r, z).





(A 5)

With reference to (4.2) in § 4.2.1 we note that, for Gaussian profiles, j(r, z) =
2F (r, z). These shape functions allow the computation of the integrals in (A 4)
without making any assumption regarding the similarity of the profiles,

I0 =
∫ ∞

0
r∗f (r∗, z)dr∗,

I1 =
∫ ∞

0
r∗f (r∗, z)h(r∗, z)dr∗,

I2 =
∫ ∞

0
r∗h(r∗, z)dr∗,

I3 =
∫ ∞

0
r∗f (r∗, z)2dr∗,

I4 =
∫ ∞

0
r∗f (r∗, z)3dr∗,

I5 =
∫ ∞

0
r∗j(r∗, z)

∂f
∂r∗

dr∗,

I6 =
∫ ∞

0
r∗l(r∗, z)dr∗,

I7 =
∫ ∞

0

(
2l

d
dz

ln wm + ∂l
∂z

)
f (r∗, z)r∗dr∗,





(A 6)

where r∗ = r/bm, with bm denoting a generic radius scale.
Top-hat variables are defined according to the following relations

R2W2 =
∫ ∞

0
rw2dr,

R2G′ =
∫ ∞

0
rg′dr,

R2WG′ =
∫ ∞

0
rwg′dr,

R2Σ2
q =

∫ ∞

0
(σ 2

w − σ 2
u )rdr.





(A 7)

With the integrals (A 7), introducing the usual entrainment assumption in the volume
balance equation (A 4)

−[ru]∞0 = αGbmwm, (A 8)
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and neglecting the vertical turbulent transfer of buoyancy (i.e. w̃g̃′), the system (A 4)
can be rewritten in top-hat equation form as

d
dz

R2W = 2RWαt,

d
dz

R2W2 = R2G′ − d
dz

R2Σ2
q ,

d
dz

R2WG′ = 0,

d
dz

R2W3 = 2
A

R2WG′ − R2W3 d ln A
dz
−W3R(C+ RD),





(A 9)

where the relations between ‘top-hat’ variables and the real variables are

R= I1/2
3 I2

I1
bm,

W = I1

I2
wm,

G′ = I2
1

I2I3
g′m,

Σ2
q =

1
2

I2
1I6

I2
2I3

w2
m,





(A 10)

where
A= I2I4

I1I3
,

C= I2I1/2
3 I5

I1I4
,

D= I7

I4
,





(A 11)

and where the top-hat entrainment coefficient αt in (A 9) is related to the Gaussian
coefficient αG in (A 8) by

αt =
[
αG

2
I1/2

3 I2

I1I0
− R

2
d
dz

ln
I1I0

I3I2

]
. (A 12)

It is worth noting that the relation between the ‘top-hat’ entrainment coefficient αt

and αG is not simply given by a proportionality coefficient, i.e.
√

2, as in the classic
top-hat formulations of the plume equations (Morton et al. 1956). This is due to the
fact that the definitions of the top-hat variables in (A 7) differ from those of Morton
et al. (1956).

With some algebra, the top-hat momentum and mean kinetic energy balance can be
manipulated in order to conveniently express the continuity equation as

d
dz

R2W = 2RW


Ri

(
1− 1

A

)
+ 1

2
R

d ln A
dz
+ 1

2
C+ 1

2
RD− 1

RW2

d
dz

(
Σ2

q R2
)

︸ ︷︷ ︸
αt


 , (A 13)
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where the term within the square brackets is equal to the entrainment coefficient αt
in (A 9) and Ri ≡ (RG′)/W2 represents a bulk Richardson number. The volume flux
balance (A 13) provides a formulation for αt that allows for its direct estimate from
first- and second-order velocity statistics.

We now assume local self-similarity of the first-order velocity statistics (but not of
second-order statistics) and adopt Gaussian profiles of velocity and buoyancy of the
form f = e−r∗2 and h= e−(r∗2/ϕ2), with r∗= r/bw. Furthermore, we model the Reynolds
stress by a gradient law of the form j= 〈ν̂T〉(∂f /∂r∗). The integrals in (A 6) then
reduce to I0 = 1/2, I1 = ϕ2/(2(ϕ2 + 1)), I2 = ϕ2/2, I3 = 1/4, I4 = 1/6, I5 = 〈ν̂T〉/2,
so that the relations in (A 10), (A 11) can be written

R= 1
2(ϕ

2 + 1)bw,

W = wm

ϕ2 + 1
,

G′ = 2ϕ2

(ϕ2 + 1)2
g′m,

Σ2
q =

2
(ϕ2 + 1)2

I6w2
m,

A= 2
3(ϕ

2 + 1),

C= 3
2 〈ν̂T〉(ϕ2 + 1),

D= 6I7





(A 14)

and the Richardson number Ri in (A 13) can be expressed as

Ri≡ bwg′m
w2

m

ϕ2(ϕ2 + 1)= 2αref

5
(ϕ2 + 1)2Γ. (A 15)

From (A 12), the relation linking the entrainment coefficients αG and αt then reduces
to

αG = 2
ϕ2 + 1

αt − bw

2
d
dz

ln(ϕ2 + 1). (A 16)

By combining (A 13)–(A 16) we finally obtain an expression for the Gaussian
entrainment coefficient as a function of the first- and second-order velocity statistics

αG = (2ϕ2 − 1)
2αref

5
Γ + 3

2
〈ν̂T〉 + 3bwI7 − 2

bww2
m

d
dz

(
I6b2

ww2
m

)
. (A 17)

Note that, assuming Gaussian radial profiles of mean vertical velocity and buoyancy,
even with a variable ϕ, the ‘drift’ term (R(d ln A/dz))/2 in (A 13) vanishes when
converting αt in αG. The last term can be expressed as

2bw

b2
ww2

m

d
dz

(
I6b2

ww2
m

)= 2bw
dI6

dz
+ 2bwI6

d
dz

ln
(
b2

ww2
m

)
, (A 18)

so that (A 17) can be finally written as

αG = (2ϕ2 − 1)
2αref

5
Γ + 3

2
〈ν̂T〉 + αnf − αm, (A 19)
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with

αnf = 3bwI7 − 2bw
dI6

dz
, (A 20)

and

αm = 2bwI6
d
dz

ln
(
b2

ww2
m

)
. (A 21)
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We present a direct numerical simulation (DNS) data set for a statistically axisymmetric
turbulent jet, plume, and forced plume in a domain of size 40r0 × 40r0 × 60r0, where r0

is the source diameter. The data set supports the validity of the Priestley-Ball entrainment
model in unstratified environments (excluding the region near the source) [Priestley and
Ball, Q. J. R. Meteor. Soc. 81, 144 (1955)], which is corroborated further by the Wang-Law
and Ezzamel et al. experimental data sets [Wang and Law, J. Fluid Mech. 459, 397 (2002);
Ezzamel et al., ibid. 765, 576 (2015)], the latter being corrected for a small but influential
coflow that affected the statistics. We show that the second-order turbulence statistics in
the core region of the jet and the plume are practically indistinguishable from each other,
although there are significant differences near the plume edge. The DNS data indicate that
the turbulent Prandtl number is about 0.7 for both jets and plumes. For plumes, this value is
a result of the difference in the ratio of the radial turbulent transport of radial momentum and
buoyancy. For jets, however, the value originates from a different spread of the buoyancy
and velocity profiles, in spite of the fact that the ratio of radial turbulent transport terms is
approximately unity. The DNS data do not show any evidence of similarity drift associated
with gradual variations in the ratio of buoyancy profile to velocity profile widths.

DOI: 10.1103/PhysRevFluids.1.074301

I. INTRODUCTION

The mixing of buoyant fluid releases with the surrounding fluid is of primary concern for a wide
number of industrial and environmental turbulent flows, spanning the ascending motions of thermals
in the atmosphere, the rise and fall of volcanic eruption columns, the release of airborne pollutants,
or the propagation of smoke in free or enclosed spaces [1]. Much attention has therefore been paid to
the turbulence dynamics of buoyant releases in a multiplicity of flow configurations. One of the most
studied flows among these, commonly referred to as a plume, is the free-shear flow arising from a
localized source of buoyancy. Since the pioneering work of Zel’dovich [2], Priestley and Ball [3],
and Morton et al. [4], plumes have been the subject of several theoretical [5], experimental [6–9], and
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numerical [10,11] investigations and are well documented in a number of review articles [12–14]. In
this context, the well-known turbulent jet can be regarded as a plume without buoyancy and provides
a reference state for understanding how buoyancy modifies the behavior of these free-shear flows.

Jets and plumes are canonical examples of flows that evolve in a self-similar fashion [14]:
Sufficiently far from the source, a rescaling of the radial coordinate and dependent variables by a
characteristic local width rm, velocity wm, and buoyancy bm results in a collapse of the data onto
a single curve. The velocity and buoyancy profiles are well represented by a Gaussian form [12]
and self-similarity allows power laws, relating the scales rm, wm, and bm to the streamwise (vertical
direction opposing the gravitational vector) z coordinate [4], to be deduced. Due to the presence of
buoyancy, the z dependence of plumes is markedly different from that of jets, yet in other respects,
as discussed in this paper, these flows are broadly alike.

There are several ways to determine the characteristic scales rm, wm, and bm. A popular
experimental method is to capitalize on the Gaussian shape of the velocity and buoyancy profiles
and associate rm with the standard deviation of the Gaussian and wm and bm with the maximum
velocity and buoyancy, respectively. A method that does not rely directly on the assumption of a
Gaussian shape is to determine local scales based on integral quantities of the flow:

rm ≡ Q

M1/2
, wm ≡ M

Q
, bm ≡ B

r2
m

, (1)

where the integral volume flux Q, specific momentum flux M , and buoyancy B are defined as

Q ≡ 2
∫ ∞

0
wrdr, M ≡ 2

∫ ∞

0
w2rdr, B ≡ 2

∫ ∞

0
brdr. (2)

Here w is the average (ensemble or time) streamwise velocity, b = g(ρe − ρ)/ρe is the fluid buoyancy
and b its average value, g is the modulus of the gravitational acceleration, and ρe is the density of
the environment. Here Q, M , and B are scaled, rather than actual, integral fluxes due to a factor π

that is not present in their definitions; this is common practice as it simplifies the resulting analytical
expressions [15].

It should be noted that the definition of bm, in Eq. (1) is nonstandard as it is usually expressed in
terms of the buoyancy flux

F ≡ 2
∫ ∞

0
wbrdr, (3)

as bm = F/Q = F/wmr2
m. While this is a perfectly reasonable definition, it implicitly assumes

averaging over a radius associated with the buoyancy profile that, in general, will not be exactly
equal to rm. With a single length scale rm as defined in Eq. (1), it follows that F = θmwmr2

mbm,
where θm is a dimensionless profile coefficient (see also Sec. III C); thus the definition of bm in terms
of F , in the current framework, is bm = F/θmQ. The profile coefficient θm, which is intimately
related to the ratio of the widths of the buoyancy and velocity profiles (see Sec. III C), plays an
important role in longitudinal mixing in jets [16], and is purportedly responsible for the large scatter
in measurements of plume entrainment [17].

The dilution of jets and plumes can be quantified by integrating the continuity equation over the
radial direction, which results in

1

rm

dQ

dζ
= −2[ru]∞. (4)

Here ζ ≡ ∫ z

0 r−1
m dz′ is a dimensionless vertical coordinate and [ru]∞ is a net volume flux into the

jet or plume per unit height. The entrainment assumption [4,18–20] links the radial volume flux to
internal jet or plume properties via

−[ru]∞ = αrmwm, (5)
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where α is the entrainment coefficient. Substitution of (5) into (4) and rearranging results in

α = 1

2Q

dQ

dζ
. (6)

Thus, the entrainment coefficient can be interpreted as (half) the relative increase in volume flux
over a typical jet or plume radius rm. This relation also clearly establishes that α is a measure of
dilution: the higher its value, the more fluid will be mixed into the jet or plume per (vertical) unit rm.

Typical ranges of values for α in jets and plumes are, respectively [21], 0.065 < αj < 0.084
and 0.10 < αp < 0.16, which, in spite of the scatter, strongly suggests that αp > αj . Using the
observation that the spreading rates drm/dz of jets and plumes are approximately equal [12,22]
and the well-known far-field solutions rm = 2αjz and rm = 6

5αpz for jets [23] and plumes [4],
respectively, it follows directly that

αp ≈ 5
3αj . (7)

By applying the relation above to the observed range of values of αj , we obtain 0.108 < 5αj/3 <

0.133, which is in reasonably good agreement with the available data for αp.
The fact that the spreading rates of jets and plumes are practically identical is intimately linked

with the turbulence production in the interior. Indeed, by considering balance equations for the
kinetic energy of the mean flow in jets and plumes [17,24–26], the spreading rate can be directly
linked to the turbulence production inside the plume. For a self-similar Gaussian plume, ignoring
turbulence and pressure effects and assuming θm = 1, it follows that [26]

drm

dz
= −3

4
δm, (8)

where

δm = 4

w3
mrm

∫ ∞

0
u′w′ dw

dr
rdr (9)

is a dimensionless profile coefficient associated with the integral of turbulence production due
to shear. This quantity is generally negative as it signifies the energy transfer from the mean to
the turbulence. Hence, under the realistic assumptions leading to (8), it follows that δm is solely
responsible for the plume spread and identical spreading rates imply identical values for δm. Direct
estimations, either using flow measurements or with high-fidelity simulations, confirm that the value
of δm for jets and plumes is indeed nearly identical [26].

Using the equation for mean kinetic energy, it is possible to derive entrainment relations that
fundamentally link α to the production of turbulence kinetic energy, the Richardson number, and
shape effects. For a self-similar Gaussian plume with θm = 1, ignoring turbulence and pressure
effects [24], the entrainment relation is [26]

α = − 3
8δm + 1

4 Ri, (10)

where the Richardson number Ri, defined as

Ri = bmrm

w2
m

= BQ

M3/2
, (11)

characterizes the significance of buoyancy compared with inertia. An important implication of the
fact that δm does not differ between jets and plumes is that (10) shows that the difference in α is
caused purely by the influence of mean buoyancy via Ri. By using the observation that δm is a
constant, (10) can be rewritten as [26]

α = αj + (αp − αj )�, (12)

which is commonly referred to as the Priestley-Ball entrainment model [3,24]. Here � = Ri/Rip is
the flux balance parameter, where Rip = 8αpβg/5 is the Richardson number for a pure plume [26]
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and βg is a profile coefficient associated with the total momentum flux (see Sec. III C for its
definition). The condition � = 1 represents a stable equilibrium (with respect to perturbations in
�), a condition referred to as that of a pure plume. The other equilibrium condition is given by
� = 0, i.e., that of a pure jet, which is a condition that is unstable to the addition of an arbitrarily
small amount of buoyancy [15]. For forced plumes, which have an excess of momentum (relative to
pure plume conditions) at the source [5], 0 < � < 1, whereas � > 1 for lazy plumes, which have
a deficit of momentum [15]. Previous experimental studies observed that (12) accurately describes
the behavior of jets, plumes, and forced plumes [9,25].

If the magnitude of the dimensionless turbulence production δm is approximately equal in jets
and plumes, one is led to ask what this implies about the radial transport of scalar quantities in the
flow. The turbulent Prandtl number

PrT = νT

DT

, (13)

where νT and DT are the eddy viscosity and eddy diffusivity, respectively, quantifies the effectiveness
with which the flow mixes momentum compared with buoyancy or mass and is a useful quantity in
this regard. The consensus is that PrT = 0.7 in axisymmetric jets and plumes [27], which suggests that
turbulence transports buoyancy or mass more efficiently than momentum [28] in both cases. However,
the underlying physics and their implications for entrainment and for the relative widths of the scalar
profile compared with the velocity profile are not understood. For jets there is good agreement
between investigators that suggests the scalar field is wider than the velocity field [6,9,23,27]. For
plumes, however, as discussed in Ref. [29] and elsewhere, there is significant uncertainty: some
studies reveal that the velocity field is wider than the buoyancy field [8,27,30], others reveal that it
is narrower [6,23,25,31]; several results imply that the velocity and scalar profiles have roughly the
same width [9,32] and some imply that the relative width varies with height [17]. The present paper
seeks to untangle the confusion regarding the relationship between PrT and the widths of the scalar
and velocity profiles by supplementing the available experimental data with precise information
from direct numerical simulation (DNS).

Herein, we follow the approach of Ezzamel et al. [25] by performing a side-by-side comparison
of turbulent jets, plumes, and the intermediate case of a forced plume, but using DNS rather than
laboratory experiments. With DNS it is relatively straightforward to prescribe boundary conditions
consistent with the analytical solutions and furthermore, DNS provides access to all variables,
including pressure, at Kolmogorov-scale resolutions. In Sec. II the simulation details are presented.
Integral flow statistics, such as the evolution of �(z), are presented in Sec. III A and the deduced
entrainment coefficient α is shown to follow closely the Priestley-Ball entrainment model (12).
Self-similarity of the first- and second-order statistics is discussed in Sec. III B, which includes an
analysis of the invariants of the anisotropy tensor. Profile coefficients, which represent the relative
contribution of various physical processes relative to the characteristic scales, are presented in
Sec. III C and these are used to decompose the entrainment coefficient into its individual components
in Sec. III D. Section III E discusses the radial turbulent transport of streamwise momentum and
buoyancy, as quantified by the eddy viscosity νT and diffusivity DT . The turbulent Prandtl number
will be decomposed and it is shown that even though jets and plumes share a very similar value for
PrT , the underlying reason in each case is different. Concluding remarks are made in Sec. IV.

II. SIMULATION DETAILS

We simulate axisymmetric jets and plumes driven by an isolated source of steady specific
momentum flux M0, volume flux Q0, and buoyancy flux F0. The source is approximately circular
and located at the center of the base of a cuboidal domain of size 402 × 60 source radii r0. The
fluid motion is governed by the incompressible Navier-Stokes equations under the Boussinesq
approximation, which we solve numerically using 12802 × 1920 computational cells over a uniform
Cartesian grid. The code for the DNS employs a spatial discretization of fourth-order accuracy that
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TABLE I. Simulation details. The entrainment coefficient α and virtual origin zv are determined directly
from rm (see Fig. 1). The constants aw and ab are prefactors of the mixing lengths of velocity and buoyancy,
respectively [Eq. (25)], and 〈PrT 〉 is the typical turbulent Prandtl number [Eq. (13)].

Simulation NxNyNz LxLyLz/r3
0 Re0 �0 trun/τ0 α zv/r0 aw ab 〈PrT 〉

J 12802 × 1920 402 × 60 5000 0 400 0.067 −3.66 0.12 0.14 0.72
F 12802 × 1920 402 × 60 5000 ≈0.03 480 varies varies
P 12802 × 1920 402 × 60 1667 ∞ 480 0.105 −3.90 0.13 0.15 0.68

conserves volume, momentum, and energy, and integration in time is performed using a third-order
Adams-Bashforth scheme (further details can be found in Ref. [33]). On the vertical and top faces of
the domain we impose open boundary conditions. These allow fluid to enter and leave the domain
in a manner that is consistent with flow in an unconfined domain [34]. We initiate the turbulence by
applying uncorrelated perturbations of 1% to the velocities in the first cell above the source.

To simulate the jet J we impose a constant uniform vertical velocity w0 at the source. Consequently,
a constant scalar flux can be maintained by imposing a Dirichlet boundary condition b = b0 on a
given scalar quantity b at the source. For the jet simulation J, this scalar quantity is passive, i.e., its
presence does not imply a source term in the momentum equation. In the forced plume simulation
F, for which b corresponds to buoyancy, the Dirichlet boundary condition on b at the source results
in a positive buoyancy flux F0. The source conditions used in the simulation of plume P correspond
to w0 = 0 and a specified positive integral buoyancy flux F0; in practice, the buoyancy flux F0 is
a diffusive flux resulting from a Neumann condition on the buoyancy at the source. Therefore, the
plume simulation P is infinitely lazy at the source (�0 ≡ 5F0Q

2
0/8αpM

5/2
0 = ∞) although, over

a relatively short distance, plume P becomes pure. Based on the analysis of Hunt and Kaye [15],
in which a constant entrainment coefficient model is assumed, the rate of decrease of the local
Richardson number immediately above a highly lazy plume source scales as

d�

dζ

∣∣∣∣
ζ=0

∝ −�
9/5
0 . (14)

Thus, the vertical distance required to approach pure-plume behavior reduces to zero as the laziness
of the source increases, i.e., as �0 → ∞. As a consequence, our plume arising from the heated
disk boundary condition, which represents the limit of an infinitely lazy plume source, is expected
to establish pure-plume behavior immediately above the source and as such to closely mimic a
true pure-plume source. For jet J and forced plume F we define the source Reynolds number
Re0 ≡ 2M

1/2
0 /ν and for plume P, Re0 ≡ 2F

1/3
0 r

2/3
0 /ν. The calculated values of Re0, in addition to

further details of the simulations, can be found in Table I.
Statistics were acquired from each simulation over a duration that is large in comparison with the

typical turnover time. For jet J and forced plume F, the turnover time based on the source conditions
is τ0 ≡ r2

0 /M
1/2
0 . For plume P, τ0 ≡ r

4/3
0 /F

1/3
0 . Prior to obtaining statistics we ensure that transient

effects arising from initial conditions are imperceptible in the leading-order statistics. Statistics were
gathered over the time period shown in Table I.

Azimuthally averaged data were obtained by partitioning the domain into concentric cylindrical
cells and averaging over all cells lying within a given shell. To compute integrals over lateral slices
of the jet (for the definition of these integrals see Sec. III C), we define the upper limit of integration
rd according to w(rd,z,t) = 0.02 w(0,z,t).

Detailed validation of the jet and plume simulations was performed in previous work [35,36] for
simulations at identical Re0. The results presented below are for a larger domain and are obtained
with even higher resolutions. A detailed validation will thus not be repeated here; agreement with
existing data will be pointed out in the text and, where appropriate, included in the figures.
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TABLE II. Asymptotic far-field solutions of jets and plumes
including turbulence and pressure effects. In the expressions above,
M0 and F0 are the mean specific momentum and buoyancy fluxes
far away from the source.

Quantity Jet Plume

� 0 1
Ri 0 8αpβg/5

rm 2αjz
6
5 αpz

wm
M

1/2
0

2αj
z−1 5

6αp

(
9
10

αp

θmβg
F0

)1/3
z−1/3

bm
F0

2αj θm
M

−1/2
0 z−1 5F0

6αpθm

(
9
10

αp

βgθm
F0

)−1/3
z−5/3

III. RESULTS

A. Integral flow statistics

From an integral perspective, the plume dynamics are fully determined by the evolution of the
characteristic radius rm, velocity wm, and buoyancy bm. For the limiting cases of a pure jet (� = 0)
and of a pure plume (� = 1), the scaling of these parameters with the distance from the source takes
the form of a power law, which can be derived from the plume equations [4]. Recently [26], these
solutions were extended to account for turbulence and pressure effects via the profile coefficient βg

and for differences in the widths of velocity and buoyancy profiles via the coefficient θm (Table II).
The profile coefficients βg and θm will be defined rigorously in Sec. III C. The streamwise evolution
of rm is shown in Fig. 1(a), confirming the almost identical linear spreading rate for the three
simulations considered. Figures 1(b)–1(d) show that the jet and plume both exhibit the expected
power-law scaling. The forced plume transitions from a near-field jetlike scaling to a far-field
plumelike scaling.

As visible in Fig. 1(a), the outflow boundary condition appears to affect the statistics in the upper
part of the domain. This is caused by subtle modification of the mean flow near the outflow boundary,
presumably because of slight pressure gradients [34]. These small disturbances affect the integral
quantities Q, M , and F via the thresholding technique (which is based on w; see Sec. II). Hereafter,
all considerations on the dynamics of the flow will therefore be based on the analysis of the flow
statistics for z/r0 < 50.

For the two limiting cases J and P, the plume radius rm(z) is fitted in the far field (20 < z/rm < 50)
to the analytical solutions rm = aα(z − zv), where zv is the virtual origin [29] and a = 2 for jets and
a = 6/5 for plumes (see Table II). We obtain αj = 0.067 and αp = 0.105, values that agree well
with the literature and provide evidence of enhanced dilution within a plume compared to a jet.

A flux balance parameter �(z) that takes into account turbulence, pressure effects, and differences
in profile widths is defined as [26]

� = 5FQ2

8αpβgθmM5/2
(15)

and its variation with height is shown for the three simulations in Fig. 2(a). For simulation J, � is
identically zero for all values of z. For simulation P, � ≈ 1 except for a rapid variation in the very
near field z/r0 < 5. It is worth noting that for simulation P, the turning points of � in the near field
are not compatible with classical solutions of the plume equations [15] and have to be attributed
to the near-field variations of the profile coefficients (Sec. III C). For forced plume simulation F, �

evolves approximately linearly towards its equilibrium state � = 1, a condition that is however not
attained at the upper limit of the simulated domain.
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FIG. 1. Variation of the characteristic plume quantities with height z for simulations J, F, and P: (a) rm(z),
(b) bm and wm for J release, (c) bm and wm for F release, and (d) bm and wm for P release. Dash-dotted lines in
(b)–(d) show asymptotic power-law scaling (Table II).

FIG. 2. Vertical evolution for the simulations J, F, and P of (a) the flux balance parameter � and (b) the
entrainment coefficient α computed from (6).
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FIG. 3. Entrainment coefficient α as a function of � over the interval 20 < z/r0 < 50 for simulations J, F,
and P, confirming the good agreement with the PB [3] entrainment model. The WL [9] and ESH [25] data are
also shown.

The variation of the entrainment coefficient α with the vertical coordinate z, as determined
from (6), is plotted in Fig. 2(b). Here Q was filtered to smooth out occasional small step changes in
its value caused by the thresholding, which would otherwise result in unphysical spikes in dQ/dζ

and α(z). The values of αj and αp (Table I) inferred from rm are displayed with the dash-dotted
lines and are in good agreement with the far-field values for the jet and the plume, respectively. The
entrainment in the pure jet shows a high variability in the near field but rapidly attains the constant
value αj , within no more than five source radii. The entrainment coefficient for simulations J and
F are almost the same in the near field. However, with increasing distance from the source, the
entrainment coefficient in the forced plume simulation F shows a clear increasing trend. For the
pure plume, the entrainment coefficient is very large in the near field (z/r0 < 5) and then attains an
approximately constant value, which is in close agreement with the far-field estimate αp = 0.105
obtained from rm. These results are in agreement with previous experimental investigations [9,25]
and show a clear tendency of the entrainment coefficient to increase with increasing �.

By plotting the computed values of α as a function of �, it is possible to test directly the
appropriateness of the Priestley-Ball (PB) [3] entrainment model (12) (see Fig. 3). Shown in the
same plot is the experimental data from Wang and Law [9] and the recent measurements from
Ezzamel et al. [25]. The latter has been reprocessed in the Appendix to better represent the coflow
in the ambient, which significantly influences the entrainment statistics. The new ambient-flow
correction shows much better agreement between the volume-flux-based estimate of α and that
obtained from the entrainment relation, although the data do not display the constant value of α that
one would expect from self-similarity in the far field for the jet and plume experiments.

As is evident from Fig. 3, all data sets show a dependence on �. The current DNS data set and the
Wang-Law (WL) data convincingly demonstrate the linear dependence on � of the Priestley-Ball
entrainment model (12) for unstratified environments in the self-similar regime. However, the figure
also exposes the variability in what may be regarded as the limiting (or end member) entrainment
coefficients; the values one would choose for αj and αp in Eq. (12) would be slightly different for
the WL and current data sets. The dashed line shows the PB entrainment model using the values
of αj and αp presented in Table I and good agreement with the DNS data can be observed. The
Ezzamel-Salizzoni-Hunt (ESH) data confirm the appropriateness of the PB model qualitatively, but
despite the ambient-flow correction (Appendix) the data remain noisy. The linear dependence of α

on � implies that δm is practically identical in jets and plumes, as argued in the Introduction. The
entrainment coefficient will be decomposed into its various parts in Sec. III D.
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FIG. 4. Self-similarity profiles of w, b, u′w′, and u′b′ over the interval 20 < z/r0 < 50 for (a) and (d) jet
simulation, (b) and (e) forced plume simulation, and (c) and (f) pure plume simulation.

B. Self-similarity

Shown in Fig. 4 are the mean velocity w, buoyancy b, radial turbulent momentum flux u′w′, and
turbulent buoyancy flux u′b′ over the vertical interval 20 < z/r0 < 50. As is customary, all variables
are presented in dimensionless form, normalized by the local value of rm, bm, and wm. In line with
our expectations, for all three simulations the mean vertical velocity w collapses onto a single profile
that closely resembles a Gaussian profile.

The radial profiles of mean buoyancy b also exhibit a clear Gaussian-like dependence on the radial
coordinate. However, the centerline values and spread differ for the three simulations. Profiles for
velocity and buoyancy almost coincide for plumes [Fig. 4(c)], whereas for the forced plume and the
jet, the buoyancy profiles have a slightly larger spread (as further quantified by the profile coefficient
θm associated with mean scalar transport; see Sec. III C). As the integral under the dimensionless
curves is unity by construction, a wider profile will reduce the centerline value of b/bm, particularly
since small changes far from the centerline contribute significantly to the integral due to the conical
geometry.

The profile of the turbulent radial momentum flux u′w′ is practically identical for the jet, forced
plume, and pure plume [Figs. 4(d)–4(f)], which is consistent with the notion of the profile coefficient
associated with the production of turbulence kinetic energy δm being insensitive to �. However,
the normalized radial turbulent buoyancy flux shows large variations in amplitude. For the jet
simulations, the profiles of u′w′ and u′b′ are practically identical. For the plume simulation, u′b′
is about 60% larger in amplitude than u′w′. The profile of u′b′ for the forced plume transitions
smoothly from the jet profile to the plume profile as � tends to unity, as indicated by the arrow in
Fig. 4(e); this is in contrast to Fig. 4(f), where no systematic variation with height is present.

The normalized mean radial velocity u is shown in Fig. 5(a). Contrary to the mean vertical velocity
w profiles, the shape of u differs significantly between the jet, forced plume, and pure plume. For the
jet, u increases from a value of zero (imposed by the radial symmetry of the flow), reaches a peak
at r/rm ≈ 0.5, then decreases, becomes negative with a minimum at r/rm ≈ 1.4, and then decays
approximately inversely proportional to the radius due to the fact that the flow varies very slowly
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FIG. 5. (a) Self-similar profiles for mean radial velocity u and (b) normalized mean radial specific volume
flux. The dotted lines indicates the values of αj and αp in Table I.

with z. For the plume, the maximum in u is significantly smaller, implying a reduction in the mean
outward radial transport in a plume. The normalized specific radial volume flux ru/rmwm, shown
in Fig. 5(b) for all three simulations, tends to a constant value outside the plume for r/rm > 1.5.
By rearranging Eq. (5), it clear that the constant value is equal to the entrainment coefficient α. The

FIG. 6. Self-similarity profiles of second-order quantities and pressure. All quantities are normalized.
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FIG. 7. (a)–(c) Ratio of mean pressure p and −(u′u′ + v′v′)/2 and (d)–(f) horizontal and vertical pressure
gradients for (a) and (d) simulation J, (b) and (e) simulation F, and (c) and (f) simulation P.

dashed lines in Fig. 5(b) are the values of α in Table I; excellent agreement is shown with the values
deduced from rm.

The turbulent components u′u′ and v′v′, shown as a function of r/rm in Figs. 6(a)–6(c), are self-
similar and practically identical. Furthermore, their dependence on � is negligible, providing further
confirmation that the turbulence inside plumes and jets is similar, at least in terms of the second-order
statistics. The mean pressure p is extremely difficult to measure in laboratory experiments and is
usually approximated by [9,25,37] p ≈ −(u′u′ + v′v′)/2. The quantity p is readily available in
DNS and it is clear from Figs. 6(a)–6(c) that it correlates well with −(u′u′ + v′v′)/2, although upon
closer inspection (Fig. 7) it becomes evident that −(u′u′ + v′v′)/2 underestimates p by 30% in
the core of the flow, while it overestimates p by about 10% near r/rm = 1. Thus, the DNS data
demonstrate that p = −(u′u′ + v′v′)/2 within, say, 20% (see [37] for a detailed explanation of the
various sources of error). Like the gradient of all quantities in a slender turbulent boundary layer,
the gradient of pressure in the radial direction is expected to be larger than in the vertical direction
by a factor proportional to the spreading rate of the flow. The DNS data confirm that this is the case
[Figs. 7(d)–7(f)].

Figures 6(d)–6(f) show the streamwise turbulent momentum and buoyancy flux. While the vertical
turbulent momentum flux is more or less identical for cases J, F, and P, the buoyancy profile differs
significantly between the three subplots. Clearly, an increase in the value of � increases the vertical
turbulent buoyancy flux, as well as the radial buoyancy flux [Figs. 4(d)–4(f)]. A similar trend is
observable in the turbulence buoyancy variance [Figs. 6(g)–6(i)]. Note that given a sufficient vertical
extent of the domain, we expect both w′b′ and b′b′ for simulation F to increase to levels observed in
simulation P.
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FIG. 8. Invariants of the anisotropy tensor (16) for the jet, forced plume, and plume. (a) Plot in ξ -η space,
together with the Lumley triangle. (b) Dependence of ξ on r/rm. (c) Dependence of η on r/rm.

To provide further evidence of the similarity of the turbulence statistics in plumes and jets it is
instructive to calculate the invariants of the anisotropy tensor [38]

bij = u′
iu

′
j

2e
− 1

3
δij , (16)

where e = 1
2u′

iu
′
i is the turbulence kinetic energy and δij is the Kronecker delta. As the turbulence

is incompressible, one invariant of b is zero and the other two, denoted ξ and η, are defined via
Tr(b2) ≡ 6ξ 2 and Tr(b3) ≡ 6η3, where Tr denotes the tensor trace. The invariants of b cannot take
any value; realizable flows are confined to a region of the ξ -η space commonly known as the Lumley
triangle [38].

The invariants are calculated as follows. The second-order statistics shown in Figs. 4 and 6 are
averaged over the range 20 < z/rm < 50, after which ξ and η are calculated as a function of r/rm.
Figures 8(b) and 8(c) show, respectively, the profiles of invariants η and ξ as a function of r/rm.
It is evident that the profiles for J, F, and P are nearly indistinguishable for r/rm < 1.5, providing
further evidence that turbulence in jets and plumes is similar. In the ξ -η plane [Fig. 8(a)], the data are
close to the ξ = η line, which is indicative of axisymmetric turbulence with one large eigenvalue,
i.e., rodlike turbulence. Interestingly, at the edge of the jet or plume, ξ changes very rapidly from
positive to negative. For plumes, the crossover appears to happen closer to the centerline than for
the jet. Thus, near the plume edge, the average picture of the turbulence resembles axisymmetric
turbulence with one small eigenvalue, i.e., disklike turbulence. These observations are in agreement
with the laboratory experiments of Hussein et al. [37], which were presented in terms of the (ξ,η)
invariants in [39].

Consideration of the vertical gradient ∂w/∂z provides a possible explanation for why the point
at which turbulence changes from being dominated by one component (the core region) to two
components (the edge of the flow) differs in jets compared with plumes. Noting that wm ∼ z−1

in jets, whereas wm ∼ z−1/3 in plumes, the point at which ∂w/∂z = 0 occurs at larger values of
r/rm in jets than it does in plumes. Likening the flow with a diverging (core region, ∂w/∂z < 0)
or converging (edge region, ∂w/∂z > 0) nozzle, one would therefore expect the point of transition
between one-component and two-component regimes, respectively, to be affected by differences in
the point at which ∂w/∂z changes sign.
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C. Profile coefficients

Profile coefficients encapsulate integrated information about the mean and turbulent fluxes of
momentum, buoyancy, mean kinetic, and turbulence production. In classical integral descriptions
of the plume equations [4], the profile coefficients are generally assumed to be either unity or zero.
However, preserving information about profile shapes is crucial in the description of unsteady jets
and plumes [35,36,40] and is also the key to decomposing entrainment into its various processes.
The profile coefficients for the fluxes of momentum β, buoyancy θ , and mean kinetic energy γ , as
well as the dimensionless turbulence production δ are given by, respectively,

βm ≡ M

w2
mr2

m

≡ 1, βf ≡ 2

w2
mr2

m

∫ ∞

0
w′2rdr, βp ≡ 2

w2
mr2

m

∫ ∞

0
prdr,

γm ≡ 2

w3
mr2

m

∫ ∞

0
w3rdr, γf ≡ 4

w3
mr2

m

∫ ∞

0
ww′2rdr, γp ≡ 4

w3
mr2

m

∫ ∞

0
wprdr,

δm ≡ 4

w3
mrm

∫ ∞

0
w′u′ ∂w

∂r
rdr, δf ≡ 4

w3
mrm

∫ ∞

0
w′2 ∂w

∂z
rdr, δp ≡ 4

w3
mrm

∫ ∞

0
p

∂w

∂z
rdr,

θm ≡ F

wmbmr2
m

, θf ≡ 2

wmbmr2
m

∫ ∞

0
w′b′rdr. (17)

The total momentum flux is given by βgM , where βg = βm + βf + βp. Similarly, θg is associated
with the total buoyancy flux, γg with the total energy flux, and δg with the total turbulence production
(including pressure redistribution). Profile coefficients β and θ show up naturally upon radial
integration of the Reynolds-averaged volume, vertical momentum, and buoyancy equations of a
high-Reynolds-number flow in a neutral environment [26]

1

Q

dQ

dζ
= 2α, (18a)

1

M

d

dζ
(βgM) = Ri, (18b)

1

F

d

dζ

(
θg

θm

F

)
= 0. (18c)

These equations reduce to the classical plume equations [4] on setting βg = 1 and θg = θm = 1.
Furthermore, we note that Ri = 0 by definition for the jet, implying that the evolution of F and
M are uncoupled (and that F in that case corresponds to a passive scalar flux). Similarly, γ and δ

emerge naturally from integration of the mean kinetic energy equation

Q

M2

d

dζ

(
γg

M2

Q

)
= δg + 2θmRi. (19)

Figure 9 shows the profile coefficients as a function of z. The coefficients associated with
the mean flow, βm, γm, δm, and θm, are shown in Figs. 9(a)–9(c). There are large variations in
the profile coefficients in the near field, which are due to changes in the velocity and buoyancy
profiles as the jet or plume develops; indeed, the largest changes occur over a small region z/r0 < 5,
for the plume even closer to the source (z/r0 < 3). However, for larger z/r0 the coefficients become
constant, which is consistent with self-similarity.

The average values of the profile coefficients over the interval 20 < z/r0 < 50 are presented in
Table III. The dimensionless buoyancy flux θm is less than unity for the jet, implying that the spread
of the buoyancy field exceeds the spread of the velocity field. This can be shown by assuming a
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FIG. 9. (a)–(c) Mean profile coefficients and (d)–(f) relative contribution of turbulence and pressure to the
dimensionless coefficients for (a) and (d) simulation J, (b) and (e) simulation F, and (c) and (f) simulation P.
The dashed lines indicate the averaging interval 20 < z/r0 < 50 used for the profile coefficients displayed in
Table III.

Gaussian form for the velocity and buoyancy profiles

w = 2wm exp

(
−2

r2

r2
m

)
, b = 2

bm

ϕ2
exp

(
−2

r2

ϕ2r2
m

)
, (20)

where ϕrm is the characteristic width of the buoyancy profile and ϕ is the ratio of the buoyancy to
velocity radii. These profiles are consistent with the definitions βm = 1 and B = bmr2

m and evaluation
of the profile coefficient for the mean energy flux results in γm = 4/3. The buoyancy flux is given
by F = 2

∫ ∞
0 wbrdr = 2

ϕ2+1wmbmr2
m. By substituting this expression into the definition of profile

coefficient θm (17), it directly follows that

θm = 2

ϕ2 + 1
. (21)

For the plume, θm ≈ 1, implying that ϕ ≈ 1 also. The value of θm for the forced plume tends
to become closer to unity with increasing z. The dimensionless turbulence production δm shows
differences of the order of 10% between the jet and the plume (see also Table III), which is too small
to explain the observed differences in α (see Sec. III D).
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TABLE III. Average profile coefficients over the interval 20 <

z/r0 < 50.

Coefficient J F P

βf 0.151 0.149 0.183
βu 0.095 0.088 0.106
βv 0.102 0.095 0.110
βp −0.093 −0.084 −0.107
βg 1.058 1.065 1.076
γm 1.306 1.282 1.256
γf 0.276 0.267 0.319
γp −0.175 −0.156 −0.183
γg 1.406 1.393 1.391
δm −0.184 −0.175 −0.201
δf 0.006 0.016 0.038
δp −0.002 −0.008 −0.021
δg −0.180 −0.167 −0.184
θm 0.901 0.964 1.011
θf 0.078 0.103 0.162
θg 0.979 1.067 1.172

Figures 9(d)–9(f) show the relative contribution of turbulence and pressure terms to the total,
which are neglected in classical plume theory. Gradual changes can be observed in the far field
that are caused by the fact that the second-order statistics require a greater vertical distance to
become fully self-similar than the first-order statistics. Indeed, Wang and Law [9] observed that full
self-similarity of the turbulence statistics did not occur before z/r0 ≈ 100, which is nearly twice the
vertical extent of our domain. However, it is clear that, in general, the influence of turbulence and
pressure is less than 10% of the mean value, which partially explains why plume theory provides
such robust predictions for plume behavior. The largest deviations between mean and total are
found in θ , the dimensionless buoyancy flux, which for plumes is as high as 20%, consistent with
the literature [32,41]. Here we would like to point out that θf is a source of systematic error in
laboratory experiments where the (total) buoyancy flux is usually determined a priori [(nozzle
volume flux)×(buoyancy)]. However, plume theory only considers means and the mean buoyancy
flux is about 20% less than the total buoyancy flux. Indeed, we find good agreement of the DNS data
with the classical solutions of plume theory only by explicitly calculating the mean buoyancy flux.

D. Decomposing the entrainment coefficient

As shown by van Reeuwijk and Craske [26], taking (6) as a definition of α and using (19)
and (18b), α can be decomposed as

α = − δg

2γg︸ ︷︷ ︸
αprod

+
(

1

βg

− θm

γg

)
Ri︸ ︷︷ ︸

αRi

+ d

dζ

(
log

γ
1/2
g

βg

)
︸ ︷︷ ︸

αshape

.
(22)

The entrainment relation (22) quantifies the contribution to α of turbulence production αprod,
mean buoyancy αRi, and changes in profile shape αshape. The vertical evolution of the individual
contributions to α, the direct estimate of α using (6), and the estimate of α using rm (Table I) are
plotted in Fig. 10. The three estimates of α are in good agreement with each other, demonstrating
the consistency of the data with the underlying integral equations. The analysis of data from the
plume literature carried out by van Reeuwijk and Craske [26] highlighted that δm, and thus αprod,
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FIG. 10. Evolution of the contribution to entrainment due to turbulent kinetic energy production αprod,
buoyancy αRi and departure from self-similarity αshape, as a function of z. Note that in the legend,

∑
αχ =

αprod + αRi + αshape.

was approximately identical in jets and plumes. This is convincingly confirmed in Fig. 10(c), as
αprod matches closely with the value of αj inferred from the jet data. For the forced plume, αprod is
slightly lower than αj but remains in good agreement. The mean-flow contribution of buoyancy to
α is constant for simulation P and has a magnitude of 2αj/3. For simulation F, αRi can be observed
to increase with height.

The term αshape will only be nonzero when the profiles of first- and second-order statistics change
in shape, i.e., when the profiles are not self-similar. Non-self-similar behavior is dominant in the near
field, where the flow transitions to turbulence and the mean profiles attain their Gaussian shapes. The
near-field region, within which αshape is different from zero, extends up to about 15 source diameters
for the jet and the forced jet and only for about 5 source diameters for the plume.

Next we explore the concept of similarity drift, which pertains to a possible variation in z of the
ratio of buoyancy to velocity profile width ϕ(z). The concept of similarity drift can be traced back
to Kaminski et al. [17], who derived an entrainment relation that contains a term of the form

αe = · · · + 1

2
R

d

dz
log A, (23)

where R is a typical radius, A = γm/θm = γm(1 + ϕ2)/2, and αe is an entrainment coefficient that is
related [26], but not identical to α [αe uses nonstandard characteristic scales in Ref. [17], implying
that the αshape in the entrainment relation in terms of α (22) is independent of θ ]. Hence, (23)
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Ref. [17]

FIG. 11. Exploration of similarity drift for (a) A = γm/θm as a function of z/r0 and (b) ϕ as a function of �.

indicates that changes in A, e.g., because of a drift ϕ = ϕ(z), will have a nonzero contribution to αe.
In Ref. [17] the value A was calculated for published data, which, despite significant scatter, showed
an increasing trend of A with the distance from the source.

Figure 11(a) shows the experimental data collected from Fig. 8 in Ref. [17] together with the
DNS data set discussed in this article. Unlike the experimental data, the DNS data do not imply that
A varies as a function of z. Indeed, it is unclear what physical mechanism could be responsible for
producing similarity drift. Full self-similarity of the process results from an asymptotically small
dependence on the source conditions and ambient conditions that scale in the same way as the local
behavior of the plume. We therefore suggest that the similarity drift observed in experiments is caused
by the absence of an ideal undisturbed, unbounded ambient environment (including confinement
effects), or a persistent dependence of the process on source conditions.

The DNS and WL data suggest a relation between ϕ and � [see Fig. 11(b)]. As for Fig. 3, the
DNS and WL data show that ϕ is a decreasing function of �, tending to ϕ ≈ 1 at � = 1. The �

dependence is more pronounced for the WL data than the DNS data, the reason for which is unclear.

E. Turbulent transport

The turbulent radial transport of streamwise momentum u′w′ and buoyancy u′b′ are crucial in
determining the profile shape and entrainment behavior of jets and plumes. These quantities can be
related to the mean fields using the gradient diffusion hypothesis, i.e.,

u′w′ = −νT

∂w

∂r
, u′b′ = −DT

∂b

∂r
. (24)

These quantities were computed using νT /wmrm = −fuw/f ′
w and DT /wmrm = −fub/f

′
b, where

the similarity functions fχ are the averages of those presented in Fig. 4 and the prime denotes
differentiation with respect to η. The results are shown in Figs. 12(a) and 12(b) for the jet and plume,
respectively. The radial distributions of νT and DT have a similar shape, with DT systematically
higher than νT for both the jet and the plume. The values for νT and DT are slightly higher for the
plume than for the jet.
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FIG. 12. Radial profiles of νT and DT for (a) the jet and (b) the pure plume. Radial mixing length radial
profiles for (c) the jet and (d) the pure plume.

The profiles for νT and DT show substantial variations over the interval 0 < r/rm < 1. A Prandtl
mixing length model [42] with mixing lengths for momentum and buoyancy of the form �m = awrm

and �mb = abrm, resulting in

νT

wmrm

= a2
w|f ′

w|, DT

wmrm

= a2
b |f ′

w|, (25)

provides values of �m/rm ≡ aw and �mb/rm ≡ ab that are roughly constant in the core region
[Figs. 12(c) and 12(d)]. Very close to the centerline, the mixing length becomes very large because
|f ′

w| and |f ′
b| tend to zero. For r/rm > 1, the mixing length concept does not work well, which we

attribute to intermittency effects associated with the plume edge. The typical values for aw and ab

over the region 0.3 < r/rm < 1.0 are presented in Table I. Estimates of the mixing length show
remarkable agreement with the experimental results recently presented by Ezzamel et al. [25], who
estimated the Eulerian integral length scale of the two-point velocity statistics (their Fig. 15). In
particular, note that the measurements revealed almost constant values of the Eulerian integral length
in the core of the plume, for both jets and plumes.

The turbulent Prandtl number PrT is a quantity of great relevance because of its extensive use in
turbulence modeling. By substituting (24) into (13), one obtains

PrT = νT

DT

= fuw

fub

f ′
b

f ′
w

. (26)

Thus, PrT can be thought of as the product of two ratios: (i) the ratio of the radial turbulent fluxes
fuw/fub and (ii) the ratio of gradients of the mean buoyancy and velocity f ′

b/f
′
w. The turbulent

Prandtl number, plotted in Fig. 13, is almost constant over the entire cross section with values in
the range 0.6–0.8. The average value 〈PrT 〉 over the interval 0.3 < r/rm < 1.0 is 0.72 for the jet
simulation and 0.67 for the plume simulation (see also Table I). Thus, the estimates of 〈PrT 〉 are
remarkably close, despite the effect of buoyancy on the plume’s behavior. Shown in Fig. 13(b) is the
ratio f ′

b/f
′
w. For the plume, the ratio is approximately unity, but for the jet it is significantly lower

due to the fact that θm < 1 and thus ϕ > 1. The ratio fuw/fub, shown in Fig. 13(c), is approximately
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FIG. 13. Radial profiles of (a) the turbulent Prandtl number PrT , (b) the ratio of the similarity functions
f ′

b/f
′
w , and (c) fuw/fub (see the text). The solid lines show the DNS data and the dashed lines the analytical

predictions (27).

constant for the plume with a value of about 0.6. For the jet, fuw/fub decreases slowly with an
average value of about 1.

Thus, although PrT is very similar for plumes and jets, the reason is different: for jets it is caused
primarily by f ′

b/f
′
w, which is associated with the ratio of widths ϕ, and for the plume primarily by the

turbulent flux ratio fuw/fub (see also Fig. 4). This can be made explicit by evaluating the ratios [by
substituting the Gaussian profiles for fw = w/wm and fb = b/bm (20)] into (24) and (25), resulting
in

f ′
b

f ′
w

= 1

ϕ4
exp

(
−ϕ2 − 1

ϕ2

r2

r2
m

)
,

fuw

fub

= ϕ4 a2
w

a2
b

exp

(
ϕ2 − 1

ϕ2

r2

r2
m

)
, (27)

noting that (ϕ2 − 1)/ϕ2 = (2 − 2θm)/(2 − θm). The product of these two terms evaluates to 〈PrT 〉 =
a2

w/a2
b , consistent with (25). Equation (27) shows that the amplitude of the ratio f ′

b/f
′
w is solely

determined by the value of ϕ. The amplitude of the ratio fuw/fub is determined both by ϕ and the
ratio of mixing lengths aw/ab. The theoretical predictions of (27), using parameter values for aw

and ab from Table I and θm from Table III, are plotted in Fig. 13 with dashed lines. The results
agree quite well in the interval 0 < r/rm < 1, in terms of both the amplitude and the trend. Near
the plume edge, it is clear that the mixing lengths and Gaussian distributions do not describe the
behavior.
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Previous authors [25] have suggested that a spatially averaged (over the radial plume section)
turbulent Prandtl number 〈PrT 〉 can be inferred from the ratio of the plume radii rm and rb, estimated
through a Gaussian fit of the radial profiles of mean vertical velocity and buoyancy, respectively.
For jets this approach is valid because, to leading order, the scalar field and the vertical velocity
field essentially obey the same similarity equations, which state that radial mixing must balance
the divergence in the vertical flux. As noted previously [43], the ratio of rm and rb can be obtained
via the substitution of Gaussian profiles into the similarity equations. Evaluation of the resulting
balance on the centerline of the flow allows one to relate DT to rb and νT to rm. Equivalently, one
can view the problem in a moving frame of reference, in which z2 ∝ t , and apply the classical
relation for diffusion, which predicts that rb ∝ √

tDT and rm ∝ √
tνT . Both approaches result in

〈PrT 〉 = ϕ−2. For jets, we observe that ϕ ≈ 1.1 and therefore would expect 〈PrT 〉 ≈ 0.8, which is
reasonably consistent with Fig. 13(a). In the case of plumes, however, the analysis described above is
not appropriate, unless one accounts for the additional term arising from buoyancy in the governing
momentum equation. Indeed, our results indicate values of 〈PrT 〉 that are systematically lower than
unity in plumes [see, e.g., Fig. 13(a)], in spite of the fact that ϕ ≈ 1.

IV. CONCLUSION

The dynamics and transport properties of a turbulent pure jet, a pure plume, and a forced plume
were examined using high-fidelity direct numerical simulations. The motivation for this work, the
numerical analog of the experimental study by Ezzamel et al. [25], was specifically to shed light on
the physical processes linking turbulent transport and entrainment.

The detailed spatial resolution of the DNS allowed the effectiveness of turbulent transport to
be quantified, e.g., via turbulent diffusion coefficients and the dilution of fluid in the plume or
jet with the ambient. For the forced plume, within which the flow dynamically adjusts towards a
pure-plume behavior asymptotically with height, of particular relevance was the vertical variation
of the entrainment coefficient α, numerous models having been proposed to capture this variation.
Our results support the Priestley-Ball [3] entrainment model (12) and show that, beyond a near-
source region (specifically for z/r0 � 20), the entrainment coefficient is a function only of the local
Richardson number.

By decomposing α [see (22)] into contributions due to turbulence production, to buoyancy, and
to shape effects, we show that the production of turbulence due to shear (as represented by the
dimensionless quantity δm) is practically identical for jets and for plumes, which is indeed the
assumption underlying (12). Moreover, since the turbulent component of entrainment has been
shown to be unaltered by buoyancy [26], this confirms that α is larger for plumes than for jets due
to entrainment associated with mean flow processes.

The fact that the production of turbulence due to shear takes approximately the same value
for jets and plumes suggests that their turbulence structure is quite similar, despite the absence of
buoyancy in a jet. The second-order statistics u′u′, v′v′, and w′w′ indeed suggest that the turbulence
levels are very similar. The invariance of the turbulence anisotropy tensor confirms that turbulence
in the core region of a jet or plume is practically indistinguishable. There is, however, evidence
of clear distinctions between the structure of a jet and a plume. For example, while there is a
transition from rodlike to disklike turbulence moving radially outward from the centerline, this
transition occurs closer to the centerline in a plume; these distinctions are believed to be linked
with vertical velocity gradients ∂w/∂z. Further differences between jets and plumes exist in the
second-order scalar statistics, such as w′b′ and b′b′. Analysis of the budgets for these quantities
would indicate how such differences can exist between flows whose dynamics are similar and
would therefore make a valuable contribution to an overall understanding of turbulence in free-shear
flows.

In agreement with existing measurements, the turbulent Prandtl number is found to be almost
identical for jets and plumes, taking a value of 〈PrT 〉 = 0.7. However, by writing this quantity as the
ratio of turbulent fluxes and radial gradients of mean quantities, it becomes evident that for jets, the
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value of 〈PrT 〉 can be attributed to differences in the ratio of velocity to buoyancy profile widths ϕ,
whereas for plumes, the value of 〈PrT 〉 is associated with the ratio of the turbulent radial transport
of buoyancy and streamwise momentum.

The DNS data do not support the notion of similarity drift and we conjecture that the observed
variations in profile widths between experiments are possibly a result of confinement or other
deviations from ideal boundary conditions.
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APPENDIX: AMBIENT-FLOW CORRECTION OF THE ESH DATA

The purpose of this Appendix is twofold: (i) to correct the ESH data [25] for vertical variation in
the ambient flow and (ii) to present the experimental data in terms of the notation used in this paper.
A significant part of the ESH work was associated with the analysis of α(z). The z dependence of α

was determined in two ways: (i) via volume conservation (6) and (ii) via the entrainment relation (22)
considering mean contributions and self-similarity only, assuming Gaussian profiles (γm = 4/3):

α = − 3
8δm + (

1 − 3
4θm

)
Ri. (A1)

In Ref. [25] this relation was presented in terms of the relative plume width ϕ = √
2/θm − 1, the

effective eddy viscosity 〈ν̂T 〉 = −δm/8
√

2, and the flux balance parameter � = 5Ri/8αp (note that
βg = 1 as only means are considered), i.e., as

αG = 3〈ν̂T 〉 + (2ϕ2 − 1)
2αpGθm

5
�. (A2)

Here αG = α/
√

2 is the Gaussian entrainment coefficient and αpG = αp/
√

2 the Gaussian
entrainment coefficient for a pure plume. The prefactor for 〈ν̂T 〉 is a factor 2 larger than reported in
Ref. [25]. Furthermore, the factor θm in the buoyancy contribution was not present in Ref. [25]; this
is caused by the inclusion of βg and θm in the flux balance parameter � (15). Indeed, denoting the
classical flux balance parameter [5] by �∗ = 5FQ2/8αpM5/2, we have �∗ = βgθm�.

As discussed in Ref. [25], the measurements revealed a small but significant flow in the ambient,
caused by (i) the diffusion of heat from the warm-air plume source along the horizontal rigid wooden
base plate within which the plume nozzle was mounted, giving rise to vertical convective motion, and
(ii) the seeding of the ambient with a stage smoke generator. Indeed, the background mean motion,
whose vertical velocity we denote by �w, was clearly captured by particle image velocimetry (PIV)
fields when measuring velocities away from the plume perimeter in the lower regions of the domain,
a region where the plume width was significantly smaller than the lateral extent of the PIV field.
Measurements indicated �w ≈ 0.15 ms−1 close to the source (whose radius is denoted r0) for the
jetlike, the forced, and the pure-plume experiments, referred to as J, F, and P, respectively. However,
at larger vertical distances above the source, the size of the PIV field did not permit measurement
of the (now significantly wider) plume or the ambient far beyond the plume perimeter. In Ref. [25]
it was therefore assumed that the background motion was uniform throughout the domain; hence
�w = 0.15 ms−1 was subtracted from the mean vertical velocities before fitting the radial profiles
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FIG. 14. Variation of entrainment coefficient as a function of distance above the source. Comparison of
entrainment coefficient estimated from rm, the volume flux balance (6), and from the entrainment relation (A2)
for (a) and (b) J, (c) and (d) F, and (e) and (f) P with (a), (c), and (e) �w = 0.15 ms−1 and (b), (d), and
(f) �w = 0.15(z/z0)−1/3 ms−1.

with a Gaussian curve of the form

w(r,z)

wg(z)
= exp

(
−r2

r2
g (z)

)
, (A3)

where wg = 2wm denotes the plume centerline velocity and rg = rm/
√

2 the Gaussian plume radius.
Figures 14(a), 14(c), and 14(e) show the J, F, and P estimates for α from [25] in the current

notation. Indicated with the dashed line in Figs. 14(a) and 14(c) is an estimate for α inferred from
rm(z) (using the relations for rm in Table II). All three estimates of α should formally provide
the same value for α. For the DNS data, this is clearly the case (Fig. 10), but experiments are
much more difficult to control, particularly the boundary conditions. The measurement data show a
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FIG. 15. Vertical evolution of δm for J, F, and P with (a) �w = 0.15 ms−1 and (b) �w =
0.15(z/z0)−1/3 ms−1.

large discrepancy between the Q-based estimate for α and the one obtained from the entrainment
relation (A2). This difference points to a mismatch in either the momentum balance or the mean
kinetic energy balance, which can be traced back to the background flow in the ambient.

In what follows we show that the differences between our estimates for α can be significantly
reduced by using a background motion whose magnitude is progressively reduced with distance from
the source. As a consequence of the convection above the base plate, the plumes studied developed
in a weak background velocity field that we would expect to scale as �w ∼ z−1/3, i.e., the plume
effectively developed within a weaker plume rising from the base plate. By applying a background
correction of the form �w = 0.15(z/z0)−1/3, where z0 is the distance from the plate where the
ambient vertical velocity was 0.15 m/s, the three estimates of α exhibit an improved agreement,
as shown in Figs. 14(b), 14(d), 14(f); all estimates are in reasonably good agreement with each
other.

The method by which δm has been calculated for the entrainment relation data (A2) is performed
differently than in Ref. [25]. Indeed, upon close inspection of the experimental radial profiles of the
Reynolds stress u′w′, in Ref. [25] the gradient diffusion hypothesis led to a systematic overestimation
of δm. As in Ref. [25], the u′w′ profile is fitted to a function of the form

u′w′

w2
g

= 2〈ν̂T 〉 r

rg

exp

(
− r2

r2
g

)
, (A4)

which follows from the substituting the Gaussian velocity profile (A3) into the gradient-diffusion
hypothesis (24) using a constant (in r) eddy viscosity 〈νT 〉 = wgrg〈ν̂T 〉. However, we now consider
rg as a free parameter [not necessarily fixed by the value provided by the fit of (A3)] and calculate
〈ν̂T 〉 based on the value of rg for which the least-squares error between the measurements and (A4)
is minimized.

By substituting (A3) and (A4) into the definition for δm, it immediately follows that δm =
−8

√
2〈ν̂T 〉; the corrected values for both 〈ν̂T 〉 and δm are shown in Fig. 15(b). For all three releases,

the values for δm are now reasonably consistent, although there is a clear increasing trend with z

that is not consistent with fully self-similar behavior (in which case δm is expected to be constant).
Nevertheless, the data are much more consistent than the original ambient-flow correction estimate
shown in Fig. 15(a). The data shown in Figs. 14(b), 14(d), 14(f), and 15(b) were used to provide the
input to Table 3 in Ref. [26].
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The release of buoyant harmful gases within enclosed spaces, such as tunnels and
corridors, may engender specific industrial and transportation risks. For safety, a simple
ventilation strategy of these spaces is to impose a flow, whose velocity is defined as
‘critical’, that confines the front of harmful buoyant gases downwind of the source of
emission. Determining the intensity of the critical velocity as a function of the geometrical
and dynamical conditions at the source is a basic fluid mechanics problem which has yet
to be elucidated; this problem involve issues on the dynamics of non-Boussinesq releases,
relating to large differences between the densities of the buoyant and the ambient fluid.
To investigate this problem, we have performed experiments in a reduced-scale tunnel.
Experimental results enlighten i) the existence of two flow regimes, depending on the
plume Richardson number at the source Γi, one for momentum-driven releases, Γi ≪ 1
and one for buoyancy-driven releases, Γi ≫ 1; ii) a transition between the two occurring in
the range 10−2 < Γi < 1, and iii) the presence of relevant non-Boussinesq effects only for
momentum-driven releases. All these tendencies can be conveniently predicted by means
of a simple model of a top-hat plume in a crossflow, which also helps in clarifying the effect
of the source radius. Asymptotic solutions of the model reveal interesting behaviours in
the limits Γi → 0 and Γi → ∞. Notably, buoyancy-driven releases, i.e. with Γi → ∞, are
predicted to behave as point sources of pure buoyancy, independently of their radius and
of the density of the emitted fluid. Experiments reveal that this behaviour is actually
observed for any release with Γi < 1. This finding supports the adoption of simplified
models to simulate buoyancy-driven releases in ventilated confined spaces.
Key words: buoyant plumes, non-Boussinessq releases, entrainment.

1. Introduction

The study of the release of a buoyant fluid within a layer of ambient fluid confined
vertically (Jirka & Harleman 1979) and laterally (Barnett 1993) is of major interest
in industrial and environmental flows (Hunt 1991). Here we investigate the dynamics
of a release of buoyant fluid discharged within a tunnel (Barnett 1993) and subjected
to a forced mechanical ventilation. A peculiar aspect of these flows (see figure 1) is
the appearance of a back-layer of buoyant fluid, which forms after impingement of the
release at the confinement surface (or at the ground), and whose front, driven by a
pressure gradient, can move forward against the ventilation (depending on its intensity).
The focus is on the control of the propagation of this buoyant front by means of the
forced tunnel ventilation. This issue is directly linked to industrial and transportation
safety problems related to the dispersion of harmful gases in confined spaces. Examples

† Email address for correspondence: pietro.salizzoni@ec-lyon.fr
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(a) (b)

Figure 1. Flow visualisations of the buoyant release subjected to a critical ventilation velocity
(from right to left): (a) forced release Γi < 1, (b) lazy release Γi > 1.

include the leakage of high pressure natural gas from pipelines, the accidental releases
of hydrogen or hydrogen sulfide, and the propagation of smoke from fires in road and
rail tunnels as well as on underground escalators (Hunt 1991). This problem has been
notably addressed to assess the safety of twin-bore road tunnels (Grant et al. 1998),
where the ventilation velocity, which blows all the smoke downstream, allowing the users
to evacuate by the entrance, is usually referred to as the ‘critical velocity’.

These practical implications are therefore related to a fundamental problem, that of
defining the intensity of the ‘critical’ ventilation velocity depending on the geometrical
and dynamical conditions at the source. To investigate this problem, we consider a hori-
zontal and infinitely long tunnel of height H and width W within which is continuously
released a fluid of density ρi, lighter than the ambient fluid ρ0, with physical properties
(molecular diffusivity Dm, viscosity ν) identical to those of the ambient air. The release
issues from a source of radius bi, with a velocity wi and is placed at the centre of the
tunnel. The critical velocity Vc can then be expressed as a function of nine dimensional
parameters, namely:

Vc = f(wi, ρi, ρ0, ν,Dm, g, bi,W,H), (1.1)

where g is the module of the gravitational acceleration. According to Vashy-Buckingham
theorem, the non-dimensional critical velocity can be expressed as a function of six non-
dimensional parameters:

Vc

wi
= f(Γi, Rei, Sc,

ρi
ρ0

,
bi
H

,
W

H
), (1.2)

where Rei = 2wibi/ν is the source Reynolds number, Sc = Dm/ν is the Schmidt number,

and Γi =
5

8α0

ηigbi
w2

i

is the plume Richardson number, with ηi = (ρ0 − ρi)/ρ0 and α0 =

0.127 (a reference value for the ‘top-hat’ entrainment coefficient for a pure plume). The
latter is a parameter that allows for a classification of buoyant releases in momentum-
driven forced plumes (Γ < 1), and buoyancy-driven pure (Γ = 1) and lazy (Γ > 1)
plumes (Hunt & Kaye 2005). In the case of negligible diffusive effects (high Re), a fixed
tunnel geometry and a fixed Sc, (1.2) reduces to:

Vc

wi
= f(Γi,

ρi
ρ0

,
bi
H

). (1.3)

In what follows we explore the dynamics of these buoyant releases by investigating
the functional dependence expressed by (1.3). Our aim is to extend and complete the
analysis previously presented by Le Clanche et al. (2014), mainly focusing on buoyancy-
dominated releases, and investigate (1.3) for a wide range of dynamical conditions at the
source, spanning from almost pure jets (Γ ≪ 1) to highly lazy plumes (Γ ≫ 1). To that
end we have performed experiments within a reduced-scale model and interpreted the
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results by means of a simple model of a plume in a crossflow. Our focus will be mainly on
the role of Γi and on that of the density ratio ρi/ρ0, the key non-dimensional parameter
used to evaluate dynamical effects referred to as ‘non-Boussinesq’ (Ricou & Spalding
1961; Rooney & Linden 1996) whose influence has still not been fully elucidated.

2. Experiments

Experiments were performed in a reduced-scale model (figure 2) of length L = 8.9m,
width W = 0.36m and height H = 0.185m. The side walls are made of toughened
glass which permit visualisation of the flow. The releases of buoyant fluid are mixtures
of air and helium, whose flow rates were controlled independently and measured by two
flowmeters. To visualise the flow, the buoyant mixture is seeded with nebulised oil and lit
with a laser sheet emitted by a lens installed at the inlet of the tunnel. Note that the mass
of oil added to seed the buoyant release is a tiny fraction of the total mass injected at the
source and thus does not affect the density of the mixture. The longitudinal ventilation
is imposed by a fan at the end of the tunnel. The flow rate within the tunnel is measured
by means of a hot-wire anemometer placed within a Venturi tube at the inlet, providing
a spatially averaged velocity over the tunnel section in the range 0.11 6 Vc 6 1.15m s−1.
The velocity at the source is instead 0.17 6 wi 6 11m s−1, producing a buoyancy flux

at the injection:

Bi = πb2iwigηi (2.1)

in the range 1 · 10−3 6 Bi 6 6.3 · 10−2 m4 s−3. Experimental results were obtained by
varying values of the three control parameters, spanning the ranges 0.004 < Γi < 24,
0.25 < ρi/ρ0 < 0.92, and 0.068 6 bi/H 6 0.270 (source diameters measured 0.1, 0.075,
0.05, 0.035, 0.025m). Note, however, that results could not be produced for any possible
combination of the control parameters in these ranges of values. Experimental conditions
were constrained by the Reynolds number, that had to be kept sufficiently high to avoid
viscous effects, and by the power of the fan used to produce the longitudinal ventilation.
These limitations did not allow us to produce releases with Γi > 2 with ‘small’ radii (i.e.
bi/H < 0.15) and highly-forced (Γi < 1) non-Boussinesq (ρi/ρ0 < 0.15) releases with
‘large’ radii (i.e. bi/H > 0.3). The Reynolds number varied in the range 700 < Rei <
11100. Note that Rei generally decreased with increasing Γi, with 2500 < Rei < 11000
for Γi < 0.5, 1000 < Rei < 6000 for 0.5 < Γi < 1 and 700 < Rei < 2000 for Γi > 1.
All pure and lazy releases therefore exceeded the critical value Recr = 600, indicated by
Arya & Lape (1990) as a threshold ensuring negligible viscous effects on buoyant releases
in a crossflow.

In the tunnel safety literature (Grant et al. 1998) the critical velocity is generally
defined as that which prevents the back-layer flow from moving upward beyond the
source. Its experimental evaluation by means of flow visualisations is somehow simple,
since it solely requires, once the source conditions are fixed, an adjustment to the fan
power to assess the position of the back-layer front at the up-wind border of the source.
This protocol inevitably involves a number of experimental uncertainties in determining
the position of the front. To estimate these uncertainties we performed 20 independent
iterations of the same experiment, for a reduced number of experimental conditions. For
each of these conditions, the uncertainty was then quantified as half of the difference
between the minimum and maximum value of Vc. This never exceeded ±10%, which was
therefore assumed to be the reference value of the experimental uncertainty.
While performing the experiments, it was immediately evident that the critical ven-

tilation condition was related to very different morphologies of the rising column of
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Figure 2. Schematic of the experimental set-up.
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Figure 3. Non-dimensional critical velocity as a function of (a) the plume Richardson number
Γi and (b) the density ratio ρi/ρ0. Hollow points indicate data from the present study and solid
points data from Le Clanche et al. (2014). In (b), the radius is bi/H = 0.068 for Γi = 0.0037
and Γi = 0.0075, bi/H = 0.135 for Γi = 0.075, bi/H = 0.203 for Γi = 0.76, and bi/H = 0.270
for Γi = 1.52.

buoyant fluid, depending on the value of the Richardson number Γi (see figure 1). Forced
momentum-driven releases Γi < 0.1 resulted in an almost vertical jet impinging on the
ceiling immediately downstream of the source position and producing a small (compared
to the tunnel height) recirculating bubble immediately upstream of the impinging region
(figure 1a). The injection of buoyancy-dominated releases (Γi > 0.1) resulted instead in a
bent-over plume which actually appeared as the result of the intermittent rise of blobs of
fluid, shaped by large-scale instabilities (figure 1b). Compared with the previous case, the
(time-averaged) position of the impinging point was moved downstream and a back-flow
appeared in the form of an elongated layer extending up to the upwind source end.

To analyse the dependence of Vc/wi in the parameter space given by (1.3) we performed
a different series of experiments. In each of these, we conveniently changed the values of
the control parameters at the source, i.e. wi, bi, and ρi, in order to vary one of the three,
i.e. Γi, bi/H, ρi/ρ0, non-dimensional parameters whilst keeping the other two fixed.

Results are shown in figure 3 and are compared to those obtained by Le Clanche et al.
(2014) in a reduced-scale model with aspect ratio H/W = 0.5, slightly different from that
of the reduced model used here, and equipped with different instrumentation. Figure 3a
shows the dependence of the non-dimensional critical velocity on the Richardson number
Γi, for varying radii bi/H and a fixed density ratio ρi/ρ0 = 0.7. Figure 3b shows the
influence of the density ratio ρi/ρ0 on a series of releases with fixed Γi, each of which
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has the same radius bi/H. Note that to ensure a turbulent release, larger radii had to be
adopted for larger Γi. As previously mentioned, the constraints of Rei > 700 significantly
limited exploration of the effect of a varying radius at large Γi, whereas the constraint on
highly forced releases was mainly limited by the power of the fan producing the tunnel
ventilation.

Experimental results on slightly forced to lazy releases, i.e. Γi > 0.1, agree well with
previous data obtained by Le Clanche et al. (2014) (2014) and therefore confirm their
main findings, namely that the non-dimensional critical velocity i) does not show any
clear dependence on the density ratio ρi/ρ0, whereas ii) it clearly exhibits a dependence

on the plume Richardson number of the form ∝ Γ
1/3
i .

Extending the investigation to Γi < 0.1 reveals further interesting features. Firstly, we
observe a weakening of the dependence of the non-dimensional critical velocity on Γi as
this falls below 0.1. This feature is in agreement with the phenomenological observation
of the two distinct flow regimes previously discussed and represented in figure 1. This
weakening of the dependence on Γi is also in accordance with the prediction given by the
simple dimensional argument, which indicates Vc/wi ∼ const for Γi → 0 (for any fixed
pair bi/H and ρi/ρ0). The critical velocity exhibits non-negligible dependence on bi/H
as Γi → 0 (see figure 3a), whereas any influence of bi/H seems to diminish for Γi > 1. As
already mentioned however, the investigation on the role of bi/H for large Γi was limited
by the constraints imposed by the experimental set-up. Data on highly forced releases
also reveals a clear dependence of the critical velocity on the density ratio. Namely,
Vc/wi exhibits a dependence of the form (ρi/ρ0)

1/2, which implies a significant reduction
as the flow attains non-Boussinesq conditions. It is worth noting that this effect, which
could not be observed in the data set of Le Clanche et al. (2014), is only observed in
momentum-driven flows and becomes undetectable as Γi > 0.1. This suggests that, as far
as the critical velocity is concerned, non-Boussinesq effects have a significant dynamical
effect only in the case of forced momentum-driven releases, and become negligible as
buoyancy begins to act on the flow dynamics.

Summarising, results show that for almost pure and lazy releases, i.e. Γi > 1, the
non-dimensional critical velocity is mainly dependent on Γi, whereas the dependence on
ρi/ρ0 seems to fade out. In other words, the release seems to lose information about its
source conditions, notably concerning its density, while keeping only that related to the
ratio of the amount of the fluxes (volume, buoyancy and momentum) that were herein
imposed. This can be physically interpreted as the effect of the intermittency in the rising
of volumes of buoyant fluid and to enhanced mixing in the very near field of the source.

To gain further insight into the functional dependence (1.3) we have compared the
experimental results with those provided by a simple mathematical model of a bent-over
plume in a crossflow.

3. Model

Following the well-established approach initiated by Morton et al. (1956), we represent
the rising column of buoyant fluid as a ‘top hat’ plume. The effect of the tunnel ventilation
is taken into account by a drag force exerted by the crossflow on the plume itself.
The balance equations for mass, vertical momentum, density difference and horizontal
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momentum can be written as





d

dy
(ρwb2) = 2ρ0ueb, (3.1a)

d

dy
(ρw2b2) = (ρ0 − ρ)gb2, (3.1b)

d

dy

[
(ρ0 − ρ)wb2

]
= 0, (3.1c)

d

dy
(ρuwb2) = Cx

√
ρρ0(V − u)2b/π, (3.1d)

where b is the characteristic plume radius, w and u are its vertical and longitudinal
velocities, respectively, ue = αw is the entrainment velocity, ρ is the plume density, V
is the ventilation velocity, and Cx is a drag coefficient. In order to limit the number of
free parameters we assume Cx = 1. The drag in (3.1d) is proportional to

√
ρρ0, which

expresses the weighting role of the local density on the force exerted by the ventilation
flow. Boundary conditions imposed at the source are b(0) = bi, w(0) = wi, u(0) = 0, and
ρ(0) = ρi. The entrainment coefficient α is assumed to be of the form α = α0(ρ/ρ0)

1/2

as is customary when dealing with non-Boussinesq releases (Rooney & Linden 1996; Van
Den Bremer & Hunt 2010).

The system of equations (3.1a)−(3.1d) represents a highly simplified model of the
dynamics of the buoyant fluid release and of its interaction with the ventilation flow.
The model does not take into account pressure gradients and turbulent fluxes, whose
roles are not necessarily negligible when considering the flow developing within a few
source radii (Ezzamel et al. 2015; Craske & van Reeuwijk 2015), as is the case in the
present study. Furthermore, the model (3.1a)−(3.1d), as it is conceived, is of course
unable to simulate any effect of the flow induced by the presence of the ceiling and of
the side walls. It is therefore worth remembering that adopting such a model is only
motivated by the aim of capturing the main bulk phenomena governing the interaction
between the two flows, rather than giving a detailed description of it.

The critical ventilation condition can be imposed by assuming that the plume lon-
gitudinal momentum flux is balanced at the ceiling height (y = H) by the entrained
momentum flux: πb2ρu2(H,Vc) = ϕ2πb2ρ0u

2
e(H,Vc). The parameter ϕ, which is expected

to be of order 1, is the only free parameter of the model to be determined by fitting
the experimental measurements. In other words, at the critical velocity condition, the
dynamical pressure imposed by the plume (ρu2) is balanced by that associated with the
entrainment air flux (ρ0u

2
e). Using α = α0(ρ/ρ0)

1/2, the critical velocity condition is
reached when the ratio between the longitudinal and the vertical velocities of the release
reach a critical value at the ceiling height:

u(H,Vc)

w(H,Vc)
= α0ϕ. (3.2)

In its mathematical formulation, the problem is therefore that of controlling the trajec-
tory of the plume’s centre of mass as it moves vertically and of its impingement point
at the ceiling (see figure 4a). Note that, given the different regimes observed in the flow
visualisations (figure 1), the parameter ϕ cannot be considered as a constant, but must be
dependent on the dynamical condition of the buoyant release at the ceiling height, which
is represented by the value of the plume Richardson number at that height ΓH = Γ (H).



The control of releases of buoyant fluid in ventilated tunnels 7

(a) (b)

2bi

V

wi

y

x

u(y)

w(y)b(y)

0.01 0.1 1 10
0.0

0.5

1.0

1.5

2.0

2.5

 i=1.52
 i=0.76 
 i=0.075
 i=0.0075
 i=0.0037

  i / 0=0.7

 bi /H=0.270
 bi /H=0.203
 bi /H=0.135
 bi /H=0.095
 bi /H=0.068

 

 

H

Figure 4. (a) Sketch of the plume in a ventilated tunnel. (b) ϕ as a function of ΓH ,
experiments (symbols) and fitting function ϕ = 2− 1.4 tanh(2ΓH).

3.1. Numerical solution

In order to determine the dependence ϕ = ϕ(ΓH) we have considered ϕ as a free
parameter and retained, for each case, the value providing the best agreement between
experimental and numerical results. These values, as a function of ΓH , are plotted in
figure 4b, which shows three main features. First, as expected the value of ϕ is effectively
of order 1, and in the range 0.6 < ϕ < 2. Second, according to the plume equations
(3.1a)-(3.1c), almost all releases attain the ceiling height H with a local value of the
plume Richardson number in the range 0.1 < ΓH 6 1. Third, values of ϕ providing the
best fit show a clear tendency in decreasing as ΓH → 1−.

Our flow visualisations (figure 1) clearly show that the morphologies of the buoyant
releases can be divided into two distinct regimes for ΓH < 0.1 and for ΓH > 1.
Visualisations suggest that, within these two regimes, the trajectory of the plume’s centre
of mass, the position of the impinging point at the ceiling, as well as other flow features,
do not exhibit any detectable difference with variation of the three control parameters
(1.3), so that the flows can be considered as similar. Given these similarity conditions,
we can therefore assume that ϕ is constant for both ΓH < 0.1 and for ΓH > 1, matching
the values of the asymptotic conditions ΓH → 0 and ΓH → ∞, respectively. In order to
combine the two asymptotic conditions and fit the data in the range 0.1 < ΓH < 1, we
adopt a function of the form: ϕ = 2− 1.4 tanh(2ΓH).

Comparisons between experimental and numerical results obtained by imposing this
form of ϕ(ΓH) are presented in figure 5, which shows that, once ϕ is set, the model
(3.1a)−(3.1d) is, in general, in good agreement with the experiments and helps in
depicting the main trends of the flow dynamics. Firstly, the model predicts the existence
of two asymptotic flow regimes, for forced Γi → 0 and lazy Γi → ∞ releases. In the first

regime Vc/wi ∝ const., whereas in the second Vc/wi ∝ Γ
1/3
i . The transition between

the two regimes occurs for 0.01 < Γi < 1 and depends upon the source radius. Namely,
the transition takes place for lower values of Γi, as the ratio bi/H decreases, i.e. as the
non-dimensional distance from source to ceiling increases. In this transition region the
solution exhibits a minimum, which is difficult to depict in the experimental results.

In accordance with what was observed in the experiments, the model predicts a greater
influence of the source radius for the forced releases than for the lazy releases. The model
reproduces well the trend in Vc/wi induced by a varying density ratio and fixed Γi (figure
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Figure 5. Non-dimensional critical velocity as a function of a) plume Richardson number Γi

and b) density ratio ρi/ρ0: comparison between numerical solution and experimental data.

5b); the critical velocity is not sensitive to variations of ρi/ρ0 for slightly forced, pure
and lazy releases, whereas it shows significant reductions with decreasing ρi/ρ0 for highly
forced releases, i.e. Γi < 0.1. This confirms that the influence of non-Boussinesq effects is
confined to momentum-driven releases. Finally, note that the agreement between model
and experiments suggests that the side-walls of the tunnel do not play any major role in
the dynamics of the buoyant plume, which therefore behaves as a release in a (laterally)
unbounded domain.

3.2. Analytical solution

Adopting an entrainment coefficient of the form α = α0(ρ/ρ0)
1/2, the system of

equations (3.1a)−(3.1d) can be rewritten as (Rooney & Linden 1996)





d

dy
(wβ2) = 2α0βw, (3.3a)

d

dy
(w2β2) = η̃gβ2, (3.3b)

d

dy
(η̃wβ2) = 0, (3.3c)

d

dy
(uwβ2) = Cx(V − u)2β/π, (3.3d)

where β = (ρ/ρ0)
1/2b is a modified plume radius and η̃ = (ρ0 − ρ)/ρ is a modified density

deficit.

Following previous authors (Hunt & Kaye 2005; Michaux & Vauquelin 2008; Van
Den Bremer & Hunt 2010), we can obtain an analytical solution of the system
(3.3a)−(3.3c), based on the solution of a freely propagating plume in an unstratified
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Figure 6. Analytical solution of (3.9) for the effect of Γi (a) and density ratio (b).

atmosphere, namely:




β

βi
=

(
Γ̃

Γ̃i

)1/2(
1− Γ̃i

1− Γ̃

)3/10

,

w

wi
=

(
Γ̃i

Γ̃

)1/2(
1− Γ̃

1− Γ̃i

)1/10

,

η̃

η̃i
=

(
Γ̃i

Γ̃

)1/2(
1− Γ̃

1− Γ̃i

)1/2

,

(3.4)

where Γ̃ =
5g

8α0

η̃β

w2
is a modified plume Richardson number which changes with height

and can be computed as




dΓ̃

dy
=

1

Λi
Γ̃ 1/2(1− Γ̃ )13/10 for Γ̃ < 1,

dΓ̃

dy
= − 1

Λi
Γ̃ 1/2(Γ̃ − 1)13/10 for Γ̃ > 1,

(3.5)

with Λi =
βi

4α0

|Γ̃i − 1|3/10

Γ̃
1/2
i

is a characteristic length imposed by the conditions at the

source. From (3.5) we obtain
y

Λi
= F (Γ̃ )− F (Γ̃i), where the function F is

F (X) =





2X1/2 for X → 0,

10

3
[(1−X)−3/10 − 1] for X → 1−,

10

3
(X − 1)−3/10 for X → 1+,

5

4
X−4/5 for X → ∞.

(3.6)

The analytical solution can then be obtained assuming that the tunnel ventilation
is much larger than the longitudinal velocity of the plume, i.e. V ≫ u, so that (3.3d)
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reduces to
d

dy
(uwβ2) = CxV

2β/π. (3.7)

By combining (3.7) with (3.4) we obtain a relationship between u and w, which is valid

for both forced Γ̃i < 1 and lazy plumes Γ̃i > 1 (for brevity, we skip the solution for a

pure plume, i.e. Γ̃i = 1):

u

w
=

5Cx

12πα0Γ̃i

(
1− Γ̃

1− Γ̃i

) 2
5



(

1− Γ̃

1− Γ̃i

)− 3
5

− 1



(
V

wi

)2

. (3.8)

Imposing the condition (3.2) i.e. u/w = ϕα0 at the ceiling height (y = H), we can
therefore compute the critical velocity as

Vc

wi
= 2α0

(
3ϕπ

5Cx

) 1
2

Γ̃
1
2
i

(
1− Γ̃H

1− Γ̃i

) 1
10


1−

(
1− Γ̃H

1− Γ̃i

) 3
5



− 1

2

, (3.9)

where Γ̃H = Γ̃ (y = H) is obtained by solving (3.5). The analytical solution (3.9) is
plotted in figure 6 against experimental data. The general trends of the solution are very
similar to those observed for the numerical solution. The assumption V ≫ u implies
larger discrepancies between model and experiments for both forced Γi ≪ 1 and lazy
Γi ≫ 1 releases. In the case of almost pure releases the differences between the analytical
(3.9) and the numerical solution are less evident.

3.3. Asymptotic behaviours

To gain an insight into the main physical aspects enlightened by the experiments it
is instructive to investigate the solutions of the system of equations (3.3) in the limits
of highly forced and lazy releases, respectively. We initially focus on the general case
(3.3) and examine subsequently the case of a tunnel ventilation much larger than the
longitudinal velocity of the plume.

Forced releases, Γi → 0

The main findings of plume theory (Van Den Bremer & Hunt 2010) indicate that the
lower the value of Γi, the larger the distance needed to attain pure plume conditions,
i.e. Γ = 1. Based on this, and given the relatively short distance between source and
ceiling, we assume here that highly forced releases, i.e. Γ̃i → 0, impinge the ceiling with
an identical balance of fluxes, i.e. Γ̃ (y = H) → 0. With this assumption, making use of

(3.6), we obtain: Γ̃ =
(
1 + 2α0y

βi

)2
Γ̃i. Thus, (3.3a)-(3.3c) can be approximated as

β

βi
=

wi

w
=

ηi
η

= 1 +
2α0y

βi
= ŷF . (3.10)

Using (3.10) we can rewrite the horizontal momentum equation (3.3d) as

dûF

dV̂F

=
Cx

2α0πV̂F

(V̂F − ûF )
2, (3.11)

where V̂F = V
wi

ŷF and ûF = u
wi

ŷF .
According to the model, the critical ventilation condition is fixed by (3.2) or, in a

non-dimensional form: ûF (H) = ûc,F = α0 ϕF , where ϕF = 2 is the value of ϕ for highly

forced releases. Equation (3.11) can be solved numerically giving ûF as a function of V̂F
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Figure 7. (a) Non-dimensional longitudinal velocity as a function of non-dimensional ventilation
velocity for forced (solid line) and lazy (dashed line) releases. (b) Solid lines: numerical solution
of (3.1a)−(3.1d); dashed lines: asymptotic solution of (3.17).

(see figure 7a) and at the critical ventilation condition, ûc,F = 0.254 and V̂c,F = 0.824.
For highly forced releases we therefore finally obtain:

Vc

wi
=

V̂c,F

1 + 2α0H
βi

. (3.12)

Lazy releases, Γi → ∞
In comparison to forced plumes (Van Den Bremer & Hunt 2010), lazy plumes rapidly

attain the condition of a pure plume (Γ̃ → 1+) as Γ̃ decreases quickly with distance from

the source (see also figure 4b). We therefore assume that for Γ̃i > 1, the release impinges

the ceiling in the condition Γ̃ (y = H) → 1. With this assumption, making use of (3.6),

we obtain: y
Λi

= 10
3 (Γ̃y − 1)−

3
10 − 5

4 Γ̃
− 4

3
i , which implies that

(Γ̃ − 1)−
3
10 Γ̃

− 1
5

i =
6αy

5βi
= ŷL. (3.13)

Thus, (3.3a)-(3.3c) can be approximated as




β/βi = ŷL,

w/wi = Γ̃
1
3
i ŷ

− 1
3

L ,

η̃/η̃i = Γ̃
− 1

3
i ŷ

− 5
3

L .

(3.14)

The horizontal momentum equation (3.3d) then gives

V̂L
dûL

dV̂L

+ 4ûL =
5Cx

2α0π
(V̂L − ûL)

2, (3.15)

where V̂L = V
wi

(
ŷL

Γ̃i

) 1
3

and ûL = u
wi

(
ŷL

Γ̃i

) 1
3

. (3.15) can be solved numerically giving ûL

as a function of V̂L and at the critical ventilation condition, ûL(H) = ûc,L = α0 ϕL,

where ϕL = 0.6, giving ûc,L = 0.076 and V̂c,L = 0.339 (figure 7a). Finally, for highly lazy
releases:

Vc

wi
= V̂c,L

(
5

6α0

βi

H
Γ̃i

) 1
3

. (3.16)
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Summarising, the asymptotic conditions can be expressed in the form:

Vc

wi
=





V̂c,F

1 + 2α0H
bi

(
ρ0

ρi

) 1
2

for Γi → 0,

V̂c,L

(
5

6α0

bi
H

Γi

) 1
3

for Γi → ∞.

(3.17)

Figure 7(b) shows a comparison between (3.17) and the numerical solution of
(3.1a)−(3.1d). For simplicity, only two source radii are shown.

A similar result can also be obtained in the case of u ≪ Vc. Making use of (3.6) the
limits of the analytical solution (3.9) become:

Vc

wi
=





Ṽc,F
{[

1 + 2α0H
bi

(
ρ0

ρi

) 1
2

]2
− 1

} 1
2

for Γi → 0

Ṽc,L

(
5

6α0

bi
H

Γi

) 1
3

for Γi → ∞

(3.18)

where Ṽc,F = 2α0

√
ϕFπ
Cx

= 0.637 and Ṽc,L = 2α0

√
ϕLπ
Cx

√
3
5 = 0.270.

For lazy releases, (3.18) is identical to (3.17); the constant V̂c,L = 0.339 is just replaced

by Ṽc,L = 0.270. For forced releases, (3.18) converges to (3.17) when the height of
the tunnel is much larger than the radius of the source (H/bi → ∞); the constant

V̂c,F = 0.824 is then replaced by Ṽc,F = 0.637.
According to (3.17) and (3.18), for Γi → 0, the critical velocity becomes independent

of Γi and depends instead only on the source radius bi/H and the square root of the
density ratio. Most importantly, for Γi → ∞, the critical velocity becomes independent
of the density ratio and depends on the cubic roots of Γi and bi/H. Very interestingly,
(3.17) and (3.18) therefore capture the role of non-Boussinesq effects, i.e. related to ρi/ρ0
in both regimes, and confirm the dependence on Γ

1/3
i suggested by the trend observed

experimentally.
Finally, it is to note that, for Γi → ∞, expressing Γi as a function of the buoyancy

flux Bi (2.1), both wi and bi vanish in (3.17) and (3.18), which therefore can be rewritten

in the form of a constant critical Froude number F̂rc, as:

Γi → ∞ Vc

(
H

Bi

) 1
3

= F̂rc (3.19)

with F̂rc =
(

25
48πα2

0

) 1
3

V̂c,L. Similarly, (3.18) gives a constant critical Froude number

F̃rc =
(
15π
4

) 1
6

(
ϕL

Cx

) 1
2

α
1
3
0 Ṽc,L.

Equation (3.19) expresses that, for highly lazy plumes, the dynamical similarity con-
ditions of the flow are reduced to one non-dimensional parameter only. In other words,
the governing flow parameters in (1.1) (for negligible viscous effects and fixed tunnel
geometry) could be simply rewritten as Vc = f(Bi, H). The conditions imposed at the
source can therefore be fully expressed by the buoyancy flux Bi only, without any need to
provide information on its radius bi and density ρi. As shown in figure 8, this similarity
condition of a constant Frc, predicted by the model in the limit Γi → ∞ actually holds
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, as a function of Γi: experimental results

(squares) and data from Le Clanche et al. (2014) (plain circles). Also shown: the critical Froude

number F̂rc obtained from (3.17) (dashed horizontal line) and from (3.18) (solid horizontal line).

for Γi > 1. This finding suggests that the dynamics of plume-like releases in ventilated
tunnels can reliably be modelled as Boussinesq releases of pure buoyancy emitted by a
point source, neglecting any non-Boussinesq effect arising at low values of the ratio ρi/ρ0.

4. Conclusions

We have investigated the dynamics of a release of buoyant fluid discharged from a
circular source placed at the centre of a longitudinally ventilated tunnel. In particular,
we focused on the dependence of the so-called ‘critical ventilation velocity’ Vc, that allows
the buoyant fluid to be confined downwind of the release point, on varying conditions
at the source: the injection velocity wi, density ρi and radius bi. By assuming negligible
diffusive effects, and a tunnel with a fixed aspect ratio (between height and width),
the non-dimensional critical velocity Vc/wi has been shown to depend on three non-
dimensional groups: the plume Richardson number Γi, the non-dimensional source radius
bi/H and the density ratio ρi/ρ0. This latter parameter is particularly relevant in order
to investigate dynamical effects known as non-Boussinesq, i.e. related to large density
differences between buoyant and ambient fluid, whose influence is still not fully elucidated
in the case of highly buoyant releases, i.e. large Γi.
To investigate these dependencies, we performed experiments in a reduced-scale tunnel,

where buoyant releases were produced with a mixture of helium and air. Experiments
have shown the following main features:

• the dependence of Vc/wi on Γi reveals the existence of two flow regimes, one for
Γi ≪ 1 and one for Γi ≫ 1;

• the transition between the two regimes occurs in the range 10−2 < Γi < 1;
• Vc/wi does not show any dependence on the density ratio as Γi > 0.1, whereas for

lower Γi the dependence is of the form (ρi/ρ0)
1/2

; and
• in the range of source radii investigated, Vc/wi seems to be more sensitive to bi/H

for forced releases, i.e. Γi < 1, rather than for lazy releases Γi > 1.
To obtain further insight into the dynamics of these flows we interpreted the experi-

ments by comparing their results to a numerical and analytical solution of a simple model
of a plume in a crossflow, which was formulated following the well-established approach
by Morton et al. (1956). Despite its simplicity, the model is able to capture all the main
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trends identified by the experiments, namely the existence of two flow regimes, depending
on Γi, and the rise of non-Boussinesq effects for highly forced releases only, Γi < 0.1.
Furthermore, the model helps in elucidating the role of the source radius on bi/H on the
flow dynamics.

Finally, asymptotic solutions of the model, in the limits Γi → 0 and Γi → ∞, reveal
key aspects of the dynamics of these releases. For forced releases, i.e. Γi → 0, the critical
velocity is a function of bi/H and ρi/ρ0, only. Concerning this latter parameter, Vc/wi is

shown to depend on (ρi/ρ0)
1/2

, although it does not fully rescale on it. For lazy releases,

i.e. Γi → ∞, asymptotic solutions show that Vc/wi rescales on Γ
1/3
i and (bi/H)1/3.

Notably, this dependence implies that Vc ∝ (Bi/H)1/3, i.e. that the critical velocity
actually depends only on the buoyancy flux at the source Bi, irrespective of its radius,
velocity and density. The good agreement of our experimental data set with this simple
scaling has two major theoretical implications:

• for pure and lazy releases, the release can be represented as a point source of pure
buoyancy, for any source conditions; and

• the so-called non-Boussinesq effects have no major influence on the flow dynamics
as far as gravitational effects take over those related to inertia.

It is worth noting that, from a practical point of view, both features support the
use of simplified mathematical models for the simulation of these flows, and define the
ventilation systems for the management and the mitigation of accidental risks related to
the releases of toxic and flammable fluids in enclosed spaces.
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Chapter 9

Direct and inverse modelling of
pollutant dispersion in the built
environment

This work relies on a long-term research activity conducted at the LMFA and devoted to the modelling
of pollutant dispersion in urban areas. The aim of this research was to develop an operational model
for the assessment of chronic urban pollution that could fulfill two main requirements:

� to use low computational resources, compared to traditional Computational Fluid Dynamics
codes, in order to run simulations of a large number of scenarios over large domains, i.e. up to
30 × 30 Km, and over long time period, i.e. one year (or more); and

� to provide reliable time-averaged concentration values with a high spatial resolution, at the street
scale.

The model, named SIRANE (Soulhac et al., 2011), adopts a simplified representation of the urban
geometry (fig. 9.1a-b) and is based on the parameterisations of the main phenomena that drive the
pollutant transfer in urban areas. SIRANE assumes a decoupling of the domain into two parts: the
urban canopy and the overlying boundary layer. Flow and dispersion in the canopy are simulated
by means of a so-called street-network model, whereas in the overlying boundary layer the flow is
modelled according to the Monin-Obukhov similarity theory and dispersion by means of a Gaussian
plume model (fig. 9.1c). In the street network approach the urban canopy is represented as a series of
boxes (fig. 9.1d), connected one to the other through nodes (fig. 9.1e), modelling street intersections.
In the network, it is assumed that dispersion is governed by only three bulk exchange phenomena,
namely: pollutant retention in street canyons due to the recirculating patterns of flow within them,
their channelling along the street axes and their transfer of pollutants at street intersection. These
phenomena are regulated by three parameters:

� the advective velocity along the street axes (Soulhac et al., 2008);

� wind horizontal fluctuations at street intersections (Soulhac et al., 2009); and

� the mass transfer velocity between the street canyon and the atmosphere (Salizzoni et al., 2009;
Soulhac et al., 2013).

As is customary for pollutant dispersion models, SIRANE simulates the unsteadiness of meteoro-
logical conditions and of emission intensity with a quasi-steady approach, assuming steady conditions
over hourly time steps. These can be subsequently used to compute long-term concentration statistics
(fig. 9.2).
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Figure 9.1: a) real urban geometry, an example of a district in Lyon; b) street network geometry; c)
turbulent exchanges at street intersections; d) pollutant dispersion over roof level; e) mass balance
within a street canyon.

This approach has been recently extended in order to develop an operational model for accidental
hazards. The aim is then to simulate unsteady pollutant releases, i.e. whose source strength intensity
varies over a timescale which is much shorter than that associated with the variation of meteorological
conditions. The purpose is to simulate the evolution of a puff of pollutant emitted by impulsive
releases of harmful gases in a built environment, as a consequence of an uncontrolled leakage within
an industrial site or a deliberate release, due to a terrorist act, within a densely populated urban area.

In what follows (chapter 9.1) we present the principle of the parameterisation implemented in this
approach, as well as of a detailed validation against wind tunnel experiments. This new formulation
the model presents two main differences compared to SIRANE:

� dispersion above roof level is based on a puff model, including the effect of wind shear on disper-
sion; and

� the size of the boxes composing the network are now smaller that the size of a street canyon and
their volume is not fixed in time.

The performance of the model is analysed by a detailed comparison with wind tunnel experiments.
These experiments concern the dispersion of steady and unsteady pollutant releases within and above
obstacle arrays with varying geometrical configurations, representing different topologies of idealised
urban districts. Results enlighten notably the effect of wind shear on the longitudinal dispersion of the
pollutant puffs. The good agreement with experimental data provides further evidence of the reliability
of the street-network approach in simulating pollutant dispersion within dense urban areas.

Note that, in its actual formulation, the model, named SIRANERISK, predicts the evolution of
an ensemble-averaged pollutant cloud, only. Its use for the assessment of accidental risk will therefore
require the inclusion of a new module for the estimate of the statistics of the concentration fluctuations
around this average value. Nevertheless, as we discuss in sect. 9.2, in its actual formulation (predicting
the evolution of an ensemble-averaged time-averaged signal), SIRANERISK can be conveniently used
as a ‘direct model’ of an inversion algorithm to estimate the mass of release ejected by the impulsive
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a) b) 

Figure 9.2: Examples of results provided by SIRANE: yearly-averaged NO2 concentrations (µg·m−3).

source, which is assumed to be unknown both in the case of an industrial accident and of a terrorist
attack. Notably, we show that this sort of inverse model is also reliable when using information
provided by high-frequency concentration signals, characterised by fluctuations that, in principle, the
direct model is not able to treat. To that purpose however, the inverse algorithm, which is essentially
based on least squares method, requires the incorporation of a specific module, known as Tikhonov
regularisation, to deal with the unsteadiness and irregularity of the signal. This allows filtering of the
signal mitigating the effect of fluctuations on the inverse model prediction errors, while keeping the
information needed to provide a reliable estimate of the total amount of mass emitted at the source.

The originality of this study is twofold. Firstly, the inversion is performed using high-frequency
fluctuating, i.e. turbulent, concentration signals. Secondly, the inverse algorithm is applied to a
dispersion process within a dense urban canopy, at the district scale, and a street network model,
SIRANERISK, is adopted.

As shown by comparison with experimental results, the model allows us to estimate the order of
magnitude of the mass of pollutant ejected, information that is more than useful when assessing the
risks related to accidental pollutant releases in a built environment. These results strongly support
the use of such a modelling approach for operational purposes and for the management of risks due to
accidental pollutant releases in a built environment.
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h i g h l i g h t s g r a p h i c a l a b s t r a c t

� SIRANERISK is a new operational
dispersion model for unsteady re-
leases of pollutant within a built
environment.

� The model is validated against wind
tunnel experiments.

� SIRANERISK is a reliable tool to esti-
mate effects of accidental releases of
harmful pollutant.
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a b s t r a c t

SIRANERISK is an operational model for the simulation of the dispersion of unsteady atmospheric re-
leases of pollutant within and above an urban area. SIRANERISK is built on the same principles as the
SIRANE model, and couples a street network model for the pollutant transfers within the urban canopy
with a Gaussian puff model for the transfers above it. The performance of the model are here analysed by
a detailed comparisons with wind-tunnel experiments. These experiments concern the dispersion of
steady and unsteady pollutant releases within and above obstacle arrays with varying geometrical
configurations, representing different topologies of idealised urban districts. The overall good agreement
between numerical and experimental data demonstrates the reliability of SIRANERISK as an operational
tool for the assessment of risk analysis and for the management of crises due to the accidental release of
harmful airborne pollutants within a built environment.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The release of toxic, flammable or explosive substances in the

atmosphere is a major risk related to the occurrence of an accident
or a terrorist act within an industrial site or a densely populated
urban area. In both of these cases, the release of harmful pollutant is
likely to be characterised by an unsteadiness of the source strength
(short-duration release). In this case, the typical time scale related
to the release is short compared to the characteristic time scale
related to the advection (or to the turbulent diffusion) of the puff in
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the atmosphere. The evaluation of the consequences of the acci-
dental releases in the surrounding areas requires estimating the
temporal and spatial evolution of the pollutant concentration of the
harmful substances, which determines the toxic effects on health or
the risk of explosion. This is essential both for the risk assessment
analysis and the crisis management. It is therefore necessary to
model the atmospheric dispersion of the pollutants within a
densely built environment, characterised by a complex geometry of
the domain within which the dispersion process takes place.

Computational Fluid Dynamics (CFD) is widely recognized as the
most suitable numerical tool to model the atmospheric dispersion
of pollutant within a complex built environment (Blocken, 2015), as
it permits simulation of the effects of the wide range of spatial
scales characterizing geometry of the industrial sites and urban
areas and influencing the dispersion process. However, CFD codes
still require excessive computational resources when adopted as
operational tools for crisis management in case of accidental (or
deliberate) releases of harmful pollutants.

The need for a reduction of the computational costs led so far to
the development of different modelling strategies (Di Sabatino
et al., 2013). One approach is that provided by the so-called CFD-
based fast responsemodels. The computation of the velocity field is
achieved by means of diagnostic models, based on a mass-
consistent approach, or prognostic models, based on averaged
(spatially or over time) formulations of the Navier-Stokes equations
closed with simple algebraic models. Dispersion is simulated with
an Eulerian or a Lagrangian approach. The most well-known
models in this category are QUIC-URB (Brown et al., 2009) and
MSS-Spray (Moussafir et al., 2004; Tinarelli et al., 2007) along with
the principles first proposed by R€ockle (1990).

An alternative approach relies in developing dispersion models
based on a simplified description of the flow and dispersion and on
the parameterisation of the main mechanisms driving pollutant
dispersion within and above the urban canopy. Examples of this
approach are given by ADMS-Urban (Carruthers et al., 2000) or
SIRANE (Soulhac et al., 2011), which are both conceived to simulate
steady releases. Among these ‘simplified’ dispersion models, as far
as we are aware, the only one aiming at simulating the dispersion of
unsteady releases within a built environment is the Urban
Dispersion Model (UDM). This is basically an unsteady Gaussian
puff model which is coupled with some empirically-derived
formulae simulating the effects of building wakes on pollutant
dispersion (Brook et al., 2003).

The aim of this paper is to present a new operational model for
the atmospheric dispersion of airborne pollutant emitted by an
unsteady source within a built environment. The model, named
SIRANERISK, is built on the same principles as the SIRANE model
and is based on the parameterisation of the main phenomena
driving pollutant dispersion within and above an urban area,
namely: dispersion over roof level, advection along street axes,
dispersion at street intersections and vertical exchanges between
street canyons and overlying atmosphere. Compared to SIRANE, the
model has beenmodified in order to treat unsteady releases (x2). To
give an overview of the model results, we present graphically in the
abstract the time evolution of the simulated non-dimensional
ensemble averaged concentration field induced by an impulsive
pollutant emission within an idealised dense urban canopy (the
same used in the experiments performed for the model validation
and presented in the next sections). The figure shows the longitu-
dinal and transversal spreading of the puff within the canopy,
driven by the advective mass fluxes along the canyon axes and the
transfers at the street intersections. The limited vertical mass ex-
change from the canopy to the atmosphere is made evident by the
retention of pollutant within the streets that persists for time that
exceeds a typical advective time scale of the puff. This kind of

simulations on an idealised urban district requires only few mi-
nutes when run on a standard laptop. Concerning a real scenario
case, the application of the parallel version of SIRANERISK on the
whole city of Paris requires between 5 and 10 min (depending on
the frequency at which concentration field are produced as a model
output).

The model is validated against wind-tunnel experiments (x3) of
passive scalar dispersion within and above idealised city districts,
involving both steady and unsteady releases. A systematic com-
parison between experimental and numerical results allows us to
discuss the advantages and the limitations of model (x4) and to
draw some conclusions and perspectives to the model develop-
ment (x5).

2. From SIRANE to SIRANERISK

SIRANERISK is an operational atmospheric dispersion model
that is able to simulate the dispersion of an unsteady airborne
pollutant release within and above the urban canopy. Based on the
street-network approach (Belcher et al., 2015; Soulhac et al., 2013,
2011), SIRANERISK is built on the same principles as the model
SIRANE and assumes a decoupling of the domain in two parts, the
external boundary layer flow and the urban canopy (Soulhac et al.,
2011). Mass transfer phenomena within the two sub-domains and
between them are modelled by means of parametric relations, and
namely:

- The pollutant dispersion above roof level (Soulhac et al., 2011);
- The advective transfer along the street axes (Soulhac et al.,
2008);

- The transfer at street intersections (Soulhac et al., 2009);
- The trapping of the pollutant within the street canyons due to
the recirculating motionwithin them and the exchangewith the
overlying boundary-layer flow (Soulhac et al., 2013).

Since the details of each of these parameterisations have been
already presented in the papers cited above, in what follows we
provide a very concise presentation of the basic modelling principle
implemented in the model. For further details on the adopted
parameterisation and the model structure the reader is referred to
(Soulhac et al., 2011) and (Ben Salem et al., 2015). In order to
simulate the dispersion of unsteady releases, the model presents
two main differences compared to SIRANE:

- The dispersion above roof height is simulated by means of a
Gaussian puff model (x2.1) that includes a module for the effects
of wind shear on the longitudinal puff spread;

- The mass balance is computed over control volumes that can be
smaller than that of a street canyon (x2.2) and whose size can be
variable with time.

2.1. Flow and dispersion above the urban canopy

The velocity field above the urban canopy is modelled as an
atmospheric boundary layer over a rough surface which has
reached a dynamical equilibrium condition. Therefore the flow is
assumed to be homogeneous in the horizontal plane so that the
velocity statistics depend on the vertical coordinate only, and can
suitably be modelled by means of similarity profiles. The temporal
evolution of the pollutant concentration field induced by an
instantaneous release (at t ¼ 0) of a mass M of pollutant from a
point source (of coordinates x0, y0, z0) is simulated by a generalised
Gaussian puff model of the form
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C ¼ Q
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(1)

where D2 ¼ ðx � xcÞT � S�1 � ðx � xcÞ is the Mahalanobis distance
(an iso-Mahalanobis distance curve corresponds to an iso-
concentration line), x is the receptor position,

xcðtÞ ¼ ∭ xcðx; tÞdx (2)

is the position of the puff centre of mass and
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CA with sijðtÞ
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is the variance-covariance matrix. The flight time is computed as
t ¼ x/Up, being Up the speed of the puff centre of mass. Note that, by
considering the variation of the height of the centre of mass as a
function of time, it is then possible to take into account the effect of
the flow inhomogeneity on the dispersion process. The terms of the
variance-covariance matrix are expressed as follows:

dsij
dt

����
tot

¼ dsij
dt

����
turb

þ dsij
dt

����
shear

(4)

where the first term denotes the plume spread due to turbulent
fluctuations, and the second term models the effects of the mean
wind shear. As customary, the first term is modelled as

dsij
dt

����
turb

¼
�
2s2u;iTL;i

	
1� exp

�� t


TL;i
��

if i ¼ j
0 if isj

(5)

where Lagrangian time scales are estimated as TL;ui
¼ 2s2

ui
C0ε

[16], with
C0 ¼ 4.5 the Kolmogorov constant and ε ¼ u3

*

kðz�dÞ the turbulent ki-
netic energy dissipation rate (k ¼ 0.4 is the Von Karman constant,
d is the displacement height, and u* is the friction velocity of the
overlying boundary layer flow, see x3.1). According to (Sykes and
Henn, 1995), the shear contribution is modelled in the form:

dsij
dt

����
shear

¼ sik
vuj
vxk

þ sjk
vui
vxk

(6)

2.2. Flow and dispersion within the urban canopy

As in the SIRANE model, the district is considered as a network
of connected streets, each of them characterised by its width W,
height H and length L (Fig. 1a). The mass balance within each single
street is then computed as follows (Fig. 1b):

dðHWLCstreetÞ
dt

¼ Qs þ Qin � Qout � Qturb (7)

where Qs is the pollutant mass rate emitted within the box, Qin is
the pollutant flux entering the street at its upstream section, Qout is
the pollutant flux flowing out of the street at its downstream sec-
tion and Qturb is the canopy/atmosphere vertical pollutant flux. The
longitudinal and lateral spread of the pollutant puff within the
urban canopy will be the result of the mass transfers, as modelled
by (7), from one box to another. In what follows, we provide a brief
description on how the fluxes Qturb,Qin and Qout in (7) are para-
meterised in the SIRANERISK model, based upon the principles of

the SIRANE model.
The street-atmosphere vertical transfer in (7) is computed as:

Qturb ¼ udðCstreet � CextÞWL (8)

where ud is a bulk exchange velocity (Barlow et al., 2004; Narita,
2007; Salizzoni et al., 2009a) whose intensity is assumed to be
proportional to the friction velocity of the external atmospheric
flow (see (Salizzoni et al., 2009a; Soulhac et al., 2013, 2011). As a
default value, in SIRANERISK it is assumed that ud ¼ 0.27u* (Ben
Salem et al., 2015). This latter relation was obtained by a theoret-
ical model of the turbulent fluxes across a two dimensional shear-
layer, whose details can be found in Soulhac et al. (2013). The
vertical mass-transfer is modelled as solely due to the turbulent
transfer, neglecting any contribution of the vertical mean velocity
component. As recently shown by Buccolieri et al. (2015), this may
lead to under predict the intensity of Qturb in case of large wind
incidence angles (with respect to the street axis) and in case of
street aspect ratios H/W < 1.

The pollutant flux Qin entering the street is computed by means
of a specific model for pollutant transfer at street intersections as
(Soulhac et al., 2009)

Qin;j ¼
X
i

Pij Cstreet;i (9)

where Pijð4Þ, the air flux entering the downwind street j, is
modelled as

Pijð4Þ ¼
Z40þ3s4

40�3s4

f
�
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�
Pij
�
4*�d4* (10)

with Pijð4*Þ the advective flux from street i to street j (computed by
means of the algorithm presented in (Soulhac et al., 2009)), and
with the wind direction 4*, a random variable given by a Gaussian
probability density function of the form:

f
�
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ffiffiffiffiffiffi
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p exp
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�
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!
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where 4 and s4 are the mean value and the standard deviation,
respectively. The value of s4 depends on the meteorological con-
ditions and on the geometry of the intersection. For operational
purposes in SIRANE, it is usually assumed s4 as given by the ratio
between the standard deviation of transversal velocity and the
mean longitudinal velocity (Soulhac et al., 2012), both estimated as
roof height, i.e. s4 ¼ svðHÞ

UðHÞ. In the present case we have s4 ¼ 12� (Ben
Salem et al., 2015).

The downstream flux Qout is equal to HWUstreetCstreet, where
Ustreet and Cstreet are an advective velocity and concentration within
the street, that in SIRANE are assumed both to be uniform over the
whole street volume. The velocity Ustreet is computed with the
analytical model developed by Soulhac et al. (2008) for the flow
within a street which is inclined at an angle 4with the direction of
the external wind:

Ustreet ¼ u*$cosð4Þ$h
�
H
W

;
z0;build
W

�
$f ð4Þ (12)

where h
�

H
W;

z0;build
W

�
is the reference value for an infinite street with

an axis parallel to the external wind direction (z0,build represents the
roughness of the street canyon walls) and f(4) is an empirical
correction function (Garbero et al., 2010) to take account of the
dynamical effects induced by the vortices with a vertical axis close
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to the street intersections.
It is worth noting that, in the case of unsteady advection-

diffusion of the concentration, the SIRANE parameterisation for
Qout will generate an instantaneous longitudinal advective transfer
within a single street (from the upwind to the downwind inter-
section), and therefore introduce a numerical diffusion in the
simulations, leading to an over prediction of the longitudinal
spreading of the pollutant plume as a function of time. To avoid this
spurious effect and properly model the unsteadiness of the transfer
of a pollutant puff within the urban canopy, we have implemented
in SIRANERISK an algorithm of “Lagrangian moving boxes” that
discretises the street canyon volume in several boxes, moving along
each street according to its mean advective velocity Ustreet. This
Lagrangian scheme prevents the effect of a longitudinal numerical
diffusion and ensures a lower computation time compared to a CFD
like Eulerian approach, which would require a high resolution
mesh. As shown in Fig. 1c and d, this discretisation evolves for each

time step, since the boxes are created at the street upwind section
and are evacuated at the street downwind section.

3. Wind tunnel experiments

The experiments were performed in the recirculating wind
tunnel of the Ecole Centrale de Lyon, having a test section
measuring 14 m long, 2.5 m high and 3.7 mwide. The passive scalar
dispersion took place in three flow configurations (Fig. 2) simu-
lating neutral atmospheric boundary layers developing over
different obstacle arrays. These were obtained by combining the
effect of spires (Irwin, 1981) of varying height placed at the
beginning of the test section and roughness elements of different
size H (and spacing). In all studied cases, the obstacle arrays
simulating urban blocks covered the entire working section in or-
der to avoid the development of an internal boundary layer due to
roughness changes.

Fig. 1. Transport processes within the canopy: a) Street canyon dimensions, b) Mass balance over the street volume, c) and d) Advection transport along the streets, with the
creation of Lagrangian boxes which move along each street.
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In the first configuration, referred to as R20 (Fig. 2), the height of
the vortex generators was equal to 50 cm and the floor was covered
by a staggered array of cubes of size 20 mm, spaced of 17 cm
longitudinally and 13 cm laterally. This flow configuration is iden-
tical to that analysed by Nironi et al. (2015) in order to study the
dynamics of a fluctuating plumewithin a turbulent boundary layer.
In the second configuration, referred to as R50, the height of the
vortex generators was equal to 100 cm and the cubes were 50 mm
high and spaced (longitudinally and laterally) by a distance of
50 mm.

The configuration B50 (Fig. 2) is the same as that studied by
Garbero et al. (2010) and represents an idealised urban district,
made up of an array of equal-height (H ¼ 50 mm) squared base
(L ¼ 5H) obstacles, separated by a distance H. The obstacles were
covered by nuts in order to simulate the effects of smaller scale
roughness elements (Salizzoni et al., 2008, 2009b). The simulated
urban district was overlain by a neutrally stratified boundary
whose depth d was approximately 0.8 m, generated by a row of
0.5 m high spires. The free-stream velocity U∞ at the top of the
boundary layer was equal to 5 m$s�1. Differently from the two
others configurations, experiments in the B50 configuration were
performed for varying angles of the incident wind according to the
district orientation.

Geometrical details on the configurations, including the values
of the planar lP and frontal area index lF (computed according to
the definition of Grimmond and Oke (1999)), and the relative main
flow parameters are given in Table 1.

In all the three cases, the source was placed at a distance of
about 10d from the beginning of the test section, where the
boundary layer flow had already reached an equilibrium condition.
The source height for both the R20 and R50 configurations was
larger than the obstacle height and equal toHr¼ 25mm for R20 and
Hr ¼ 60 mm for R50. Conversely, for the B50 configuration,
Hr ¼ 25 mm (H/2), and was therefore lower than the obstacle
height. In this latter case the source was placed at a street inter-
section within the array (see Garbero et al., 2010).

3.1. Velocity field

The velocity field above the obstacle arrays was investigated by
means of hot-wire anemometer with an X-probe. For each mea-
surement point, we registered 5 min signals with a frequency of

5000 Hz. Details on the probe calibration are provided in (Nironi
et al., 2015). Vertical profiles of the first and second-order mo-
ments of the velocity are plotted in Fig. 3. The mean velocity pro-
files in the lower part of the boundary layer are well fitted (Fig. 3a)
by a logarithmic law of the form:

UðzÞ ¼ u*
k
ln
�
z� d
z0

�
(13)

where z0 is the roughens length.
We have estimated the friction velocity as u* ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�u0w0

p
by

averaging the u0w0 data in the lower part of the flow field (Fig. 3b)
where the Reynolds stresses vary only slightly with respect to their
average value. The two other parameters, z0 and d, are then esti-
mated through the best fit of the mean velocity profile with the
logarithmic law (13), assuming the computed value of u*.
Conversely, the mean longitudinal velocity throughout the whole
boundary layer is suitably modelled with a power-law of the form
(Ben Salem et al., 2015):

U
U∞

¼ hn; (14)

where h ¼ (z-d)/(d-d) is the normalised vertical coordinate and
where the values of the exponent n depend on the wall roughness
(see Table 1).

Fig. 3-b-c shows that the profiles of the second-order velocity
statistics registered in the three configurations, when rescaled on
u*, can be expressed as invariant functions of h ¼ (z-d)/(d-d), which
proves that the three flow configurations are dynamically similar.
Namely, the profiles of the standard deviations (Fig. 3-c) of the
fluctuating velocities are well fitted by the following 3rd order
polynomials:

su ¼ 2:44u*
�
1þ 0:68hþ 0:67h2 � 0:67h3


; (15a)

sv ¼ 1:66u*
�
1� 0:15h� 0:120h2 � 0:38h3


; (15b)

sw ¼ 1:2u*
�
1þ 0:96h� 2h2 þ 0:4h3


; (15c)

Note that, as shown by Garbero et al. (2010) and Ben Salem et al.

Fig. 2. Experimental set-up for the a) R20, b) R50 and c) B50 configurations.

Table 1
Parameters of the obstacle array and of the overlying boundary layer flows for the three configurations studied (boundary layer height d, friction velocity u*, source height Hr,
roughness length z0, displacement height d, obstacle height H, planar lP and frontal area index lF exponent n of the power-law, see (14)).

Config. d (m) u* (m$s�1) Hr (m) z0 (m) d (m) H(m) lP lF (0�) n

R20 0.8 0.18 2.5 $10�2 10e4 7$10�3 2 $10�2 0.018 0.018 0.25
R50 1.2 0.24 6 $10�2 1.14$10�3 3.8 $10�2 5 $10�2 0.25 0.25 0.29
B50 0.8 0.22 2.5 $10-2 1.32$10�4 5 $10�2 5 $10�2 0.69 0.14 0.27
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(2015), for the B50 configuration the flow field above the obstacle
array was not sensitive to variations of the wind directions. This
feature is directly related to the nature of the skimming flow
regime developing above the simulated urban canopy (Salizzoni
et al., 2008; Ben Salem et al., 2015).

3.2. Passive scalar dispersion

The passive scalar dispersion experiments consisted in the
simulation of steady and unsteady releases of ethane (C2H6) from a
point source placed at varying height (Table 1), within the simu-
lated neutral atmospheric boundary layer flow. The source was

composed of a curved tube with a circular section, having an 8 mm
external diameter and a 6 mm internal diameter. In the unsteady
experiments, the release was produced by a piston expelling a mass
M of pure ethane, corresponding to a volume of 28.4 cm3. This
source configuration is a compromise between different con-
straints, namely to have a source i) small enough not to filter out the
effects of meandering on the puff dispersion and ii) large enough
not to generate an excessive outlet velocity.

The ejection lasted of 0.17 s (Fig. 4a), simulating an impulsive
release. The duration of this release was chosen so as to emit a mass
of ethane sufficiently large to allow for its detection at a distance of
4 m from the source but not as high as to produce excessive flow

Fig. 3. Experimental characterisation of the turbulent boundary layer above the idealised urban canopy. (a) Vertical profiles of the mean longitudinal velocity: symbols represent
experimental data whereas lines refer to the logarithmic profiles (13). (b) Vertical profiles of the non-dimensional Reynolds stress (c) Vertical profiles of the standard deviation of
the three velocity component: symbols represent experimental data whereas lines refer to 3rd order polynomials given by (15a), (15b) and (15c).
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perturbation close to the release point. Velocity at the source was
5.9 m s�1. Using a simple analytical model for a co-flowing jet
(Blevins, 1984), the relative velocity difference between the passive
scalar release and the surrounding flow was estimated to be of
approximately 26% at 25 cm from the source, 13% at 50 cm and 6.5%
at 1 m.

Passive scalar concentrations were measured by means of a
Flame Ionisation Detector, with a sampling frequency of 400 Hz
(Nironi et al., 2015). For steady releases, signals were recorded over
2min. For unsteady releases, in order to achieve a reliable statistical
description of the time-dependent concentration field induced by
the pollutant releases, experiments were repeated 100 times for
each measurement point. This allowed us to estimate an ensemble
average time-dependent concentration, for each measurement
location. We show in Fig. 4-b-c two comparisons between single
concentration signal (as a function of time) and average over 100 of
these signals, measured for the R20 configuration at x* ¼ 2.5, y* ¼ 0
and z* ¼ 0.031 (distances are made dimensionless using the
boundary layer d height as a length scale). As Fig. 4-b-c show, the
fluctuation levels compared to the ensemble average can be
extremely different from one realisation to another. The time-
dependent ensemble averages were used as a benchmark to vali-
date the results provided by the model. In particular, the model
validation was based on the comparisons of three parameters
(Fig. 4-c-d): i) the maximal value of the ensemble averaged

concentration, referred to as Cmax (Fig. 4-b), ii) a characteristic
advection time, referred to as t*max, and iii) a time lapse represen-
tative of the longitudinal spreading, referred to as ðt*end � t*begÞ.

For the R20 and R50 configurations, in which the source is
higher than the obstacle height, experiments were performed for a
single wind direction and both steady and unsteady measurements
were located at the source height, i.e. above the obstacle array. For
the B50 configuration, in which the source is placed within the
obstacle array, experiments were performed for varying wind di-
rections and concentration signals were measured within (z/H ¼ 1/
2) and above (z/H ¼ 2) the urban canopy. Note that the results for
steady releases in the B50 configuration are those of (Garbero et al.,
2010), who performed experiments for four different wind di-
rections: 4 ¼ 2.5�; 4 ¼ 10�; 4 ¼ 25�; 4 ¼ 45�. In this same exper-
imental set-up, we have performed a new series of experiments to
simulate the dispersion of impulsive pollutant releases, for two
different wind directions only, i.e. 4 ¼ 30� and 4 ¼ 45�.

4. Results

We verify the reliability of the SIRANERISK model by comparing
its results to those provided by wind tunnel experiments. Firstly (x
4.1), we analyse the dispersion within a turbulent boundary layer
over varying roughness walls, i.e. in the R20 and R50 configura-
tions. In this case, the focus will be mainly on the effects of

Fig. 4. a) Concentration signal registered at the source during the emission. b) and c) Temporal evolution of the concentrations down-wind the source: comparisons between
signals registered during a single realisation of the experiment at x* ¼ 2.5, y* ¼ 0 and z* ¼ 0.031 (see text) and the ensemble averaged signals (computed over 100 realisations). (d)
Definition of characteristic puff advective time tmax and characteristic time of the longitudinal puff spread (tend�tbeg).
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longitudinal shear on the dispersion of unsteady releases.
Secondly (x 4.2), we analyse the dispersion within and above a

dense urban canopy, i.e. the B50 configuration. For this configura-
tion, we initially evaluate the dispersion of steady releases (x 4.2.1)
discussing the performances of the SIRANERISKmodel compared to
those of the SIRANEmodel. Subsequently, we focus on the ability of
SIRANERISK in predicting ensemble averaged concentrations of
unsteady releases (x 4.2.2), and namely on the level of the con-
centration peaks, their arrival time at a given receptor and their
longitudinal spread.

4.1. Configuration R20 and R50 e dispersion above sparse city
districts

In the R20 and R50 configurations, the source emits above the
obstacles placed on the ground, in a region of the flow where the
mean shear rate is maximal. In simulating this dispersion process,
we do not explicitly represent the obstacle array, whose effect on
the flow is therefore taken into account as a distributed drag acting
on the overlying boundary layer. Therefore to run the simulations,
we only use the module for the dispersion above the urban canopy
presented in x2.1. This requires to set the vertical profile of the
mean longitudinal velocity, given here by (14) (with varying values
of the n exponent given in Table 1), and of the standard deviation of
the three velocity components, computed by means of (15a), (15b)
and (15c), adopting the corresponding values of the friction velocity
u* (Table 1). These data are used to compute the spreading (4) of the
puff and displacement of its centre of mass. In what follows, our
analysis mainly focuses on the modelling of the wind shear effect,
i.e. the terms, on the passive scalar dispersion.

The spatial evolution of themean concentration field downwind
from a steady source of pollutant is a problem that has been
extensively studied in the literature (e.g. Fackrell and Robins, 1982).
Therefore, for brevity, we do not show here the results for these
cases. These were essentially used to perform preliminary com-
parisons to check the accordance of our Gaussian-puff model with
the experimental data. The only thing we want to point out is that,
in case of steady releases, the concentration results computed
activating and deactivating the contribution of the wind shear, i.e.
(6), are very similar, showing that, as pointed out by previous au-
thors (e.g. Chatwin,1968), this effect has almost no influence on the
lateral and vertical spread of a steady plume.

We focus instead on the case of unsteady puff releases. These
have equally received a considerable attention over the years, since
the pioneering theoretical work of (Chatwin, 1968). Experiment on
puff-like releases have been however more rarely presented in the
literature, due to the higher complexity of the set-up and mea-
surement techniques required to perform these experiments (Yee,
1998).

We show in Fig. 5 the evolution of the non-dimensional con-
centration for configurations R20 and R50 as a function of the non-
dimensional time t* ¼ tU∞

d
, registered at five different transversal

positions and for different distances from the source. The com-
parison between experimental and numerical results show that the
time-dependent concentration signals modeled by activating the
shear model are quite different from those calculated without it
(Fig. 5).

As Fig. 6-a shows, the maximum concentrations calculated by
the Gaussian puff model including the effect of shear reproduces
well the experimental results whereas neglecting this effect leads
to systematically overestimating the maximal concentration and
underestimating the longitudinal puff spreading. The comparison
with experiments shows that the model reproduces accurately the
characteristic longitudinal spread of the mean puff in both config-
urations R20 and R50 (Fig. 6-b) when the effect of shear is properly

taken into account. However (see Fig. 6-c), the time of occurrence of
peaks of the ensemble averaged signals can be also reliably pre-
dicted by a conventional Gaussian puff model. This can be
explained by the fact that the centre of mass of the puff moves at
the same speed in both models, and is therefore not affected by the
role of shear. In other words, the shear acts in modifying the lon-
gitudinal puff spread and, therefore, its structure around its centre
of mass, but does not alter the velocity at which the centre of mass
moves downstream. All these features confirm experimental find-
ings presented in previous experimental studies, e.g. (Yee, 1998),
and support the theoretical analysis originally developed by
Chatwin (1968).

This highlights the reliability of the parameterisation of wind
shear (4) included in the generalised Gaussian model (1) in
reproducing the physics of the dispersion of a short-duration
release of a passive scalar in the atmospheric boundary layer. The
wind shear induces a dilution of the pollutants within the plume
associated with the increased longitudinal dimension of the puff.
Indeed, for the same amount of mass released into the atmosphere,
the modelling of the stretching of the puff is crucial in correctly
predict the decrease of concentration levels downwind the source.
Therefore this effect is generally taken into account in Gaussian puff
dispersion models (Hunt, 1982; McHugh et al., 1997).

4.2. Configuration B50 e dispersion within a dense city district

In the case B50, the model for flow and dispersion above the
canopy is similar to that adopted for R20 and R50 (with different
values of u* and n). Differently from the two aforementioned cases,
the urban canopy is explicitly modelled by means of the street
network module (x 2.2). This requires three parameters to be set:
the empirically-derived corrective function f(4) for the computa-
tion of the mean advective velocity Ustreet, the intensity of the ve-
locity fluctuation s4 to compute mass exchanges at street
intersections, and the non-dimensional canopy-atmosphere ex-
change velocity ud/u*. The function f(4) is determined as (see Ben
Salem et al. (2015))

f 4ð Þ ¼ 1þ a
4

p

4

p
� b

� 
for 0 � 4 � p

2

f 4ð Þ ¼ f p� 4ð Þ ¼ f �4ð Þ for 4; 0;
p

2

h i
8><
>: (16)

with a ¼ 6.4 and b ¼ 0.5. The value of exchange parameters s4 and
ud/u*, for the four wind directions considered are given in Table 2.
These parameters are not the reference values currently adopted in
the SIRANE model, i.e. s4 ¼ svðHÞ

UðHÞ ¼ 12� and ud/u* ¼ 0.27, but are the
ones providing the best agreement between the SIRANEmodel and
the experimental results in the analysis performed by Ben Salem
et al. (2015).

The interpretation of the physical causes inducing the variability
of s4 and ud/u* with 4 shown in Table 2 has been extensively dis-
cussed in Ben Salem et al. (2015) and is beyond the scope of the
present analysis. This will instead focus on the effects of a finer
spatial discretisation of the domainwithin the canopy. It is however
to note that, in general, adopting the reference value
s4 ¼ svðHÞ

UðHÞ ¼ 12� and ud/u* ¼ 0.27 deteriorates only slightly the
model performances (Ben Salem et al., 2015) since they alter
significantly the values of the statistical indices used to evaluate the
model, according to the criteria proposed by Chang and Hanna
(2004) (see x 4.2.1).

4.2.1. Steady releases
We begin by analysing the results for the case of steady releases.

SIRANERISK results are systematically compared to the
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a) Configuration R20

b) Configuration R50

Fig. 5. Time dependent ensemble averaged concentration in the a) R20 and b) R50 configurations. Evolution of the non-dimensional concentration C* ¼ Cd3/M at receptors placed at
varying distances from the source x* ¼ x

d
as a function of the non-dimensional time t* ¼ tU∞

d
. Comparison between experimental signals (black) and SIRANERISK prediction obtained

with (red) and without (blue) the effect of wind shear. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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experimental data and to the results provided by SIRANE, pre-
sented by Ben Salem et al. (2015). The aim of this analysis is to
examine the influence of the finer discretisation of the domain
within the canopy adopted by SIRANERISK in which the lengths of
the boxes are smaller than that of the streets, compared to that
adopted by SIRANEwhich models each street as a single box (x 2.2).
Therefore we do not focus on the accuracy of the model parame-
terisations, a subject that has been widely discussed by Ben Salem
et al. (2015).

In order to quantify the agreement between the simulations and
the experiments, we take into account four statistical parameters,
as is customary in the recent literature (Chang and Hanna, 2004),
which help in quantifying the differences observed between C*

p , the
non-dimensional averaged concentration predicted by SIRANE, and
C*
m, the one measured in the experiments (the concentrations for

steady releases are made dimensionless by dividing them by
DC ¼ Q=ðU∞d2Þ). These are the correlation coefficient R, the frac-
tional bias FB, the normal mean square error NMSE, defined as,

R ¼

�
C*
p � C*

p

��
C*
m � C*

m

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
C*
p � C*

p

�2 �
C*
m � C*

m

�2
s (17)

FB ¼ C*
p � C*

m

1
2

�
C*
p þ C*

m

� ; (18)

NMSE ¼
�
C*
p � C*

m

2
C*
p C*

m

; (19)

and the fraction of observations within a factor 2 of Prediction
(FAC2), defined as the fraction of data having the properties
0:5 � C*

p=C*
m � 2, respectively. The statistical indices are computed

in two ways: considering all the data above and within the canopy,
and considering the data within the canopy only. The comparison
between the three datasets is presented in Figs. 7e10, for the four
wind directions considered. A summary of the model perfor-
mances, compared to those of SIRANE, is given in Table 3.

For 4 ¼ 2.5� (Fig. 7-a,b,c,d), SIRANERISK results are almost
identical to those computed by SIRANE (see Fig. 7 and Table 3). The

Fig. 6. Scatter plots comparing results provided by the experiments and SIRANERISK simulations without (blue triangles) and with (red diamonds) the effect of shear for con-
figurations R20 and R50. (a) Maximal ensemble-averaged concentrations, (b) longitudinal puff spreading and (c) averaged advection times. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Values of the exchange parameters s4 and ud/u* adopted in the simulations for the
configuration B50.

4 ¼ 2.5� 4 ¼ 10� 4 ¼ 25� 4 ¼ 45�

s4 15� 15� 30� 30�

ud/u* 0.3 0.35 0.25 0.55
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model generally reproduces well the concentration distribution
within and above the canopy. As already enlightened by Ben Salem
et al. (2015), the main limitation of the model for these low angle
configurations is its inability in predicting the turbulentmass fluxes
directed towards the transversal streets (Fig. 7-b). It is of note that
this limitation persists in SIRANERISK, i.e. even when adopting a
finer discretisation of the domain within the canopy.

Transversal profiles above the canopy (Fig. 7-a) are almost
indistinguishable. The only differences between the two models

can be detected at the farthest downstream sections, where SIR-
ANERISK tends to predict higher concentrations (Fig. 7-b,c). How-
ever, the overall comparison of the experimental results with the
twomodels shows that the slope of the regression line (Fig. 7d) and
the relative R2 coefficient for the SIRANE and SIRANERISK results
are very close one to the other.

The case 4 ¼ 10� (Fig. 8-a,b,c,d) is the only configuration within
which SIRANERISK seems to effectively benefit from a finer spatial
discretisation within the canopy. Even though the concentrations

Fig. 7. Steady plume behaviour throughout the array for 4 ¼ 2.5� . Comparison between experimental data (black diamonds) at varying distance from the source position (þ) with
numerical results of the SIRANERISK model (red line) and SIRANE model (blue dashed line) above the canopy (z ¼ 2H) (a) and (b) within it (z ¼ H/2). (c) Comparison between the
experimental vertical profiles (points) and the numerical results (lines) at different heights. (d) Scatter plots comparing the concentrations predicted by SIRANERISK and SIRANE
with the all wind tunnel data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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above the canopy (Fig. 8-a,c) are very similar to those computed by
SIRANE (and in a general good agreement with experimental data),
the two models show significant differences in predicting concen-
tration levels within the canopy. This is evident in particular by
analyzing the concentration profiles along the transversal street.
Differently from SIRANE that computes a unique spatially averaged
concentration within each street, SIRANERISK is able to reproduce
the high pollutant gradients within the transversal street, espe-
cially close to the source. However, note that this ability of SIR-
ANERISK does not necessarily results in better performances of the
model, compared to SIRANE, as estimated by the values of the
statistical indices (see Table 3).

In the configuration 4 ¼ 25� and 4 ¼ 45�, the results (Figs. 9 and
10) provided by SIRANERISK differ very slightly from those of

SIRANE, and are in a general good agreement with the experi-
mental data. This shows that the finer spatial discretisation adopted
by SIRANERISK has almost no effect on the results both within
(Figs. 9-b and 10-b) and above the canopy (Figs. 9-a and 10-a and
Figs. 9-c and 10-c). In these configurations, the concentration field
within the canopy is effectively characterised by almost constant
levels within the street and abrupt variations at street intersections
(Figs. 9b and 10b). A description of the concentration field at the
street scale is therefore sufficient to capture this kind of variability
within the canopy.

4.2.2. Unsteady releases
Finally, we analyse the performances of SIRANERISK in simu-

lating the dispersion of unsteady releases within a dense urban

Fig. 8. As in Fig. 7 for 4 ¼ 10� .
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canopy. Numerical results are compared to the experimental results
obtained for twowind directions: 4¼ 25� and 4¼ 45�. The location
of the measurements points for these experiments is shown in
Fig. 11.

A direct comparison between measured and simulated non-
dimensional concentration for different locations downwind of
the source within and above the urban canopy is presented in
Figs. 12 and 13. Unlike the previous cases presented, concentrations
are made dimensionless adopting the obstacle height H (and not
the boundary layer height d) as a length scale. The model pre-
dictions for the dense city district case (Fig. 13) look very different
from those obtained for the boundary layer flow (Fig. 5). The
simulated time dependent concentrations exhibit significant fluc-
tuations, especially within the canopy (Fig. 13a). These are the re-
sults of several puffs passing through the position where these
signals are recorded. The puffs reach this position travelling along
different trajectories, within and above the canopy, and can
therefore be characterised by concentration levels that can be very
different. Their superposition can therefore produce concentration
signals characterised by abrupt variations.

Results indicate that the model provides generally better
agreement with the experimental results above the canopy than

within it. For 4 ¼ 25� (Fig. 12), the concentration signals above the
canopy show a remarkable agreement with the experiments. The
main differences between the two can be observed for the re-
ceptors located at the right border of the plume and can be
reasonably attributed to a slight error in the evaluation of the wind
direction (Ben Salem et al., 2015), where the experimental estimate
was affected by an uncertainty of ±2.5� (Garbero et al., 2010). Re-
sults for 4 ¼ 45� are slightly less accurate than for the 4 ¼ 25� case.
However, the model reproduces well the arrival time of the
pollutant front, and the subsequent reduction of the concentration
levels as a function of time (Fig. 14).

Within the canopy, results show that SIRANERISK is generally
able to reproduce qualitatively the time evolution of the ensemble
averaged concentration. For given receptors, and for both wind
directions, the agreement with the experiment is excellent. This is
the case for the receptors placed closed to the axis of the ensemble
averaged plume centerline, whose orientation is very close to the
wind direction. Larger discrepancies between experiments and
numerical results can be conversely observed at receptors located
at the lateral plume borders.

Despite these local differences between experimental and nu-
merical results, an overall analysis of the dataset (see the scatter

Fig. 9. As in Fig. 7 for 4 ¼ 25� .
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Fig. 10. As in Fig. 7 for 4 ¼ 45� .

Table 3
Model performances for the four wind directions: statistical indices refer to all data, i.e. within (at z/H¼ 0.5) and above (at z/H¼ 2) the canopy, and to datawithin (at z/H¼ 0.5)
the canopy only. Values of the indices exceeding the Chang and Hanna (2004) threshold are in bold.

4 ¼ 2.5� 4 ¼ 10� 4 ¼ 25� 4 ¼ 45�

SIRANERISK SIRANE SIRANERISK SIRANE SIRANERISK SIRANE SIRANERISK SIRANE

All data R 0.93 0.91 0.94 0.91 0.89 0.87 0.92 0.92
FB 0.05 0.02 0.17 0.11 0.27 0.24 0.30 0.34
NMSE 0.18 0.17 0.14 0.16 0.25 0.25 0.31 0.45
FAC2 0.55 0.60 0.58 0.63 0.53 0.60 0.63 0.70

Canopy data R 0.93 0.91 0.91 0.89 0.86 0.84 0.91 0.93
FB �0.01 �0.06 0.17 0.13 0.30 0.17 0.38 0.43
NMSE 0.16 0.18 0.14 0.18 0.25 0.30 0.32 0.47
FAC2 0.40 0.53 0.56 0.58 0.46 0.54 0.63 0.68
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plots presented in Fig. 14) shows that the model is able to reliably
simulate the arrival time of the pollutant puff and has a tendency in
overestimating the maximal concentration registered at a given
location. This can be reasonably attributed to an underestimation of
the longitudinal puff spreading due to the velocity shear inside the
canopy, which is not taken into account in the model. As originally
shown by Taylor (1953) in the case of a pipe flow, the velocity shear
generates a significant longitudinal spreading which controls the
concentration dilution in the pipe. Similarly, the velocity shear
observed within a flow developing within a street canyon (Soulhac
et al., 2008) can significantly affect the dilution of pollutant con-
centration. However, these effects of shear are not included in the
parameterisation implemented in the canopy-module of SIR-
ANERISK. This feature can explain the overestimate of the
maximum concentration simulated by SIRANERISK.

5. Conclusions

The aim of this study was to present the SIRANERISK model and
to evaluate its performances against wind-tunnel measurements of
steady and unsteady pollutant releases within an idealised urban
district. SIRANERISK is built on the same principles as the model
SIRANE and adopts specific parameterisation to simulate flow and
dispersion in a densely built environment, i.e. in areas characterised
by densely packed groups of buildings and characterised by two
main features: i) the spacing between the buildings (the street
width) generally do not exceed the building height, therefore
producing flow patterns that are commonly referred to as ‘street
canyon flows’ and ii) the width of the building blocks exceeds that
of the streets separating them, so that the flow developing in the
streets is somehow decoupled from that in the intersections. In
these urban geometries, referred to as ‘street networks’ (Belcher
et al., 2015; Soulhac et al., 2011) the main phenomena driving
flow and dispersion are (Soulhac et al., 2011) the dispersion above
roof level, the mean advection along the street axes, the dispersion
at street intersections and the vertical exchanges between canopy
and atmosphere. Unlike SIRANE, SIRANERISK is able to simulate the
unsteadiness of the transfer within and above the canopy. For that
purpose, SIRANERISK presents two main differences compared to
SIRANE:

- Concerning the dispersion in a boundary layer flow, it integrates
the effect of wind shear on the spreading of the pollutant puff;

- Concerning the dispersion in the urban canopy, it adopts a finer
discretisation of the street networks, by means of a model of
moving boxes.

In order to evaluate the performance of the model, we have
compared its results to wind tunnel experiments of passive scalar
dispersion within and over different obstacle arrays. Two of these,
referred to as R20 and R50 configurations, were devoted to the
simulation within a turbulent boundary layer above a rough sur-
face, representing a sparse city district. The other, referred to as
B50, was devoted to the simulation of the dispersionwithin a dense
city district.

Firstly, we have analysed the dispersion of steady and unsteady
releases of a passive scalar within a turbulent boundary layer,
focusing on the role of the vertical shear of the mean longitudinal
velocity in the dispersion of steady plumes and unsteady puffs.
Results confirm main findings of previous theoretical (Chatwin,
1968) and experimental (Yee, 1998) analyses. These show that the
effect of shear is almost negligible on the mean concentration field
produced by steady releases. Conversely, its effect is significant in
the case of instantaneous releases. Comparisons with experimental
data show that the model reproduces accurately the arrival time of
the concentration peaks at any downstream location, as well as the
spatial distribution of the concentrationwithin the puff as it travels
downstream.

Secondly, we have analysed the case of dispersion within a
dense urban canopy. For steady state releases, the results of SIR-
ANERISK are very similar to those of SIRANE both within and above
the canopy. In other words, themodel does not really benefit from a
finer discretisation of the domain within the canopy. Even though
SIRANERISK, unlike SIRANE, is able to reproduce concentration
gradients within a single street, its performances are not boosted by
this skill. This result suggests that, for operational purposes, the
simulation of steady releases with a street network approach does
not require to discretise the domain at a scale smaller than the
street scale. Considering the case of impulsive releases within the
urban canopy, SIRANERISK is shown to simulate reliably the time
evolution of concentration signals obtained by the ensemble
average of 100 realisations of the same release. In a general way, the
model tends to capture very well the arrival time of the concen-
tration peak for all considered receptors. However, the value of the
maximal (ensemble averaged) concentration is generally slightly
overestimated by the model, which can be attributed to an un-
derestimation of the longitudinal dispersion of the pollutant puff

Fig. 11. Locations of the measurement points for the unsteady release experiments, within (blue crosses) and above (red circles) the urban canopy for the two wind directions: (a)
4 ¼ 25� and (b) 4 ¼ 45� . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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a) Within the canopy z=H/2

b) Above the canopy z=2H

Fig. 12. Results for 4 ¼ 25� at a) z ¼ H/2 and b) z ¼ 2H. Temporal evolution of the non-dimensional concentration C* ¼ CН3/M at different positions downwind the source.
Comparison between wind-tunnel experiments (back) and the SIRANERISK model (red).
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a) Within the canopy z=H/2

b) Above the canopy z=2H

Fig. 13. As in Fig. 12 for 4 ¼ 45� .
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within the canopy.
These results demonstrate that the SIRANERISK model is a

suitable operational tool for risk analysis and crisis management in
case of accidental or deliberate releases of harmful pollutants in the
urban atmosphere. Further research work is planned in order to
include a parameterisation for the concentration fluctuations
(Cierco et al., 2012) within the puff and to model the effects of
buoyancy in order to simulate the dispersion of light and dense
releases (Marro et al., 2014).
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9.2 Inverse atmospheric dispersion modelling to estimate the
source strength of accidental pollutant releases in the built
environment from turbulent concentration signals
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h i g h l i g h t s

� We present an inverse model for accidental pollutant releases in a built environment.
� The model are tested against wind tunnel experiments.
� Results support the use of the model as operational tool for risk assessment.
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a b s t r a c t

We present an inverse atmospheric model to estimate the mass flow rate of an impulsive source of
pollutant, whose position is known, from concentration signals registered at receptors placed downwind
of the source. The originality of this study is twofold. Firstly, the inversion is performed using high-
frequency fluctuating, i.e. turbulent, concentration signals. Secondly, the inverse algorithm is applied
to a dispersion process within a dense urban canopy, at the district scale, and a street network model,
SIRANERISK, is adopted. The model, which is tested against wind tunnel experiments, simulates the
dispersion of short-duration releases of pollutant in different typologies of idealised urban geometries.
Results allow us to discuss the reliability of the inverse model as an operational tool for crisis man-
agement and the risk assessments related to the accidental release of toxic and flammable substances.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In cases of accidental atmospheric releases of harmful sub-
stances in an urban area or on an industrial site, gathering infor-
mation about the mass of pollutant ejected is essential in order to:

- manage the crisis situation (shortly after the accident),
- assess the impact on the environment and human health (at
later times).

For these purposes, inverse dispersion models are extremely
useful tools as they comprise a direct atmospheric model and an
inverse algorithm, whose coupling allows the position and strength

(eventually as a function of time) of a source of pollutant to be
reconstructed from the concentrations measured at receptors
placed downwind of the source.

Managing risks and crises due to accidental pollutant releases
has become an important issue, due to the occurrence of major
industrial and nuclear accidents in the last decades (Fukushima in
2011 (Winiarek et al., 2012; Chai et al., 2015; Lin et al., 2015), AZF in
2001 in Toulouse (Taveau, 2010), Algeciras in 1998 and Chernobyl in
1986 (Qu�elo et al., 2007)) and an increased concern over terrorist
attacks in densely populated urban areas.

Despite the relevance of these problems, as far as we are aware,
there have been relatively few studies (e.g. Brereton and Johnson,
2012; Keats et al., 2007), which consider inverse modelling
within urban and industrial environments. However, among the
studies conducted on this subject we find Bady (2013), Chow et al.
(2008), and Lien et al. (2006) who coupled inverse algorithms with
Computational Fluid Dynamics (CFD) codes and Khlaifi et al. (2009),
Krysta et al. (2006), Lushi and Stockie (2010), and Rudd et al. (2012)
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who instead used simple Gaussian models. Note that both direct
modelling approaches, i.e. CFD and Gaussian models, present major
limitations in an operational context. CFD codes require long
calculation times, which are not compatible with the short time-
scales imposed by a crisis situation. On the other hand, the results
of Gaussian models are affected by significant errors due to the
oversimplification of the representation of the velocity field and of
the dispersion process in complex geometries.

An example of a source term identification study in a built
environment based on an operational model is that of Glascoe et al.
(2006), who used the UDMmodel (Urban Dispersion Model) with a
stochastic sampling algorithm (MCMC) and the Bayesian approach.
The study enlightened the limitations of an operational Gaussian
model in identifying the source position, due to its inability to
correctly simulate the main phenomena driving pollutant disper-
sion in an obstacle array (Joint Urban 2003 campaign), simulating
an urban canopy. Similar conclusions were also drawn by Rudd
et al. (2012) when working with data from wind tunnel experi-
ments. They argued that the adoption of a direct model able to
account explicitly for the local urban geometry (as street network
models do), instead of a simple Gaussian model, would help in
improving the accuracy of the inverse model.

In the case of a terrorist attack as well as in some industrial
accident, the duration of the release, referred to hereafter as TE, is
likely to be much shorter than the typical timescales associated
with the advection of a puff of pollutant in the surrounding at-
mosphere. In such ‘short duration’ releases, it is particularly diffi-
cult to obtain information about the evolution of the pollutant flow
rate at the source and/or the total amount of pollutant released
during the accident by means of an inverse model. Direct opera-
tional dispersionmodels (have to) rely on a statistical description of
the dispersion process and therefore provide only ‘time-averaged’
or ‘ensemble-averaged’ values of concentrations. However, in the
case of a short duration (accidental) release, the concept of
‘ensemble average’ is no longer pertinent, since we actually deal
with a single realisation of the dispersion process. The only avail-
able information is (at best) a highly fluctuating, i.e. turbulent,
concentration signal registered by one (or more) monitoring sta-
tion(s) placed downwind of the source. It is therefore not clear
what the reliability of the results of the inverse model would be in
these circumstances.

To investigate these features, we have developed herein an in-
verse model to estimate the mass flow rate of an impulsive release
within a built environment, that uses as input data a highly fluc-
tuating turbulent concentration signal, registered at fixed receptors
downwind of the release.

The model is here tested on ‘short-duration’ releases occurring
in two flow configurations: a rough wall boundary layer, simulating
a sparse urban city district, and a densely packed group of obsta-
cles, simulating a dense city district. Both configurations are stud-
ied bymeans of wind tunnel experiments, presented in Section 2. In
Section 3 we present the direct model (Soulhac et al., 2016), SIR-
ANERISK, which is an operational dispersion model conceived to
simulate the dispersion of unsteady pollutant releases within the
urban canopy.

In Section 4 we provide details on the inverse algorithm, which
is a particular case of a data assimilation method (Bocquet, 2010;
Jeong et al., 2005). It is essentially a least-squares method, used
to minimise the difference between concentrations measured at a
receptor and predicted by the dispersion model. Similar methods
have been widely applied, since the 1960s, to geophysical and
meteorological problems (Backus and Gilbert, 1967; Kanasewich
and Chiu, 1985; Lewis et al., 2006; Lewis and Derber, 1985;
Richardson and Zandt, 2009), and more recently to pollutant
dispersion problems for source identification (Issartel et al., 2012;

Jeong et al., 2005; Krysta et al., 2006; Lushi and Stockie, 2010;
Roussel et al., 2000; Sharan et al., 2012; Rudd et al., 2012; Singh
et al., 2013). The least-squares approach is herein coupled with a
regularization method to deal with the high level of fluctuation in
the input data.

Finally (Section 5), we analyse the ability of the inverse model to
estimate the mass flow rate at the source. The analysis is performed
using both instantaneous signals and ensemble-averaged concen-
trations. By statistically evaluating the errors of the predictions
obtained using these two types of signal, we finally discuss the
reliability of the inverse model for operational purposes. The
analysis presented here is characterised by two features that are
worth emphasising. Firstly, data from only one receptor were used
in each case, whereas in real applications there would probably be
data from several detectors. Secondly, the detector positions are
well chosen, i.e they are in the central region of the dispersing
clouds. This avoids the issue of zero concentrations (noise) being
returned in individual realisation from towards the edge of the
clouds.

2. Wind tunnel experiments

Experiments, whose results have been recently presented by
Soulhac et al. (2016), were performed in the wind tunnel of the
Laboratoire de M�ecanique des Fluides et d’Acoustique of the Ecole
Centrale de Lyon. These consisted of producing impulsive releases
of a passive scalar (ethane) in configurations simulating idealised
urban geometries, reproduced at approximately a 1:400 scale.

The reference wind speed in the wind tunnel, the free-stream
velocity U∞ ¼ 5 m,s�1 at the top of the boundary layer, is
assumed to be the same as that at the full scale. The release lasted
TE ¼ 0.17 s in the wind tunnel, which therefore corresponds to
about 68 s (Fig. 2a) at full scale (multiplied by a factor of 400).

The focus here is on only two of the three configurations pre-
sented by Soulhac et al. (2016): the R20 configuration that simu-
lates a sparse city district, and the B50 configuration that simulates
a dense urban district (see Fig. 1b). In both cases, the urban districts
were overlain by a turbulent boundary layer of depth d ¼ 0.8 m,
generated by a row of spires (Irwin, 1981) 0.5 m high placed at the
beginning of the test section.

In the R20 configuration, the floor was covered by a staggered
array of cubes of side 20 mm, spaced 17 cm longitudinally and
13 cm laterally. The B50 configuration comprised an array of equal-
height (H ¼ 50 mm) square-based (L ¼ 5H) obstacles, covered by
nuts, and separated by a distance H. Among the experimental data
set presented by Soulhac et al. (2016), for the B50 configuration, we
refer here to measurements performed within the canopy at a
height z ¼ H/2 and for a wind direction 4 ¼ 45�, only.

In both the R20 and B50 configurations, the free-streamvelocity
U∞ at the top of the boundary layer was equal to 5 m,s�1 and the
source was placed at a distance of about 10d from the beginning of
the test section, where the boundary layer flow had already
reached an equilibrium condition. The source height for the R20
configuration was larger than the obstacle height and equal to
Hr¼ 25mm. For the B50 configuration, the source height was lower
than the obstacle height, Hr ¼ 25 mm (H/2). In this latter case the
source was placed at a street intersection within the array (see
Garbero et al., 2010).

Time-dependent signals of passive scalar concentrations were
measured downwind of the source at fixed positions by means of a
Flame Ionisation Detector, with a sampling frequency of 400 Hz
(Nironi et al., 2015).

In order to achieve a reliable statistical description of the time-
dependent concentration field induced by the pollutant releases,
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experiments were repeated 100 times for eachmeasurement point.
This allowed us to estimate an ensemble-averaged time-dependent
concentration for each measurement location. The time-dependent
ensemble averages were used as a benchmark to validate the re-
sults provided by the direct model (see Section 3) and to identify
parameters characterising the ensemble-averaged puff (Fig. 2b),
namely: i) the maximal value of the ensemble-averaged concen-
tration, referred to as Cmax; ii) a characteristic advection time,
referred to as tmax and iii) a time lapse representative of the lon-
gitudinal spreading, referred to as tend e tbeg (note that the identi-
fication of tmax and tend e tbeg from these signal actually requires a
travel time that greatly exceeds the emission duration, which im-
plies that the receptors are placed beyond a certain fetch
downstream).

We show in Fig. 2 comparisons between single concentration
signals (as a function of time) and the ensemble average (over 100
realisations), measured for the R20 configuration at R2 (Fig. 2c and
d) and for the B50 configuration at B1 (Fig. 2e and f).

To improve readability of the experimental results, signals are
plotted with two distinct abscissa: one referring to a real time and
the other to a non-dimensional time. Note that normalisation of
time, as well as that of concentration and distance, is obtained by
adopting different scales for the two configurations: d and U∞ for
the R20 configuration and H and UH (themean longitudinal velocity
at the roof height) for the B50 configuration. We therefore have
C* ¼ Cd3/M, x* ¼ x

d
, and t* ¼ tU∞

d
for R20 and C* ¼ CН3/M, x* ¼ x

H and

t* ¼ tUH
H for B50. Note that, for a fixed amount of mass emitted, real-

scale concentrations have to be rescaled by a factor d�3(orH�3) with
respect to those registered in the wind tunnel.

It is worth noting that the signals registered in configuration
R20, especially those close to the source, show a higher intermit-
tency than those registered in the B50 configuration (see Fig. 2cef).
This intermittency is due to the influence of the large-scale velocity
fluctuations on the passive scalar dispersion (Gifford, 1959; Fackrell
and Robins, 1982; Nironi et al., 2015; Marro et al., 2015). The large-
scale vortices displace the pollutant puff as a whole, producing a
phenomenon known asmeandering (Gifford,1959) and resulting in
concentration signals characterised by abrupt variations from zero
to themaximal value. In a general way, this phenomenon is reduced
for increasing distances from the source, as the size of the pollutant
puff is increased due to the effects of relative dispersion. When the
size of the pollutant puff attains (or exceeds) the dimensions of the
larger vortices, the meandering motion is suppressed and so is the
intermittency of the concentration signals registered at a fixed re-
ceptor. Within a group of densely-packed obstacles, as for the street
network considered herein (configuration B50), the distance

between the obstacles limits the size of the larger vortices
compared to those that would be present over a boundary layer
flow (R20 configuration). For this reason, the presence of the ob-
stacles inhibits the meandering motion, which explains the lower
intermittency observed in the signals registered in configuration
B50, compared to those registered in configuration R20.

Note that the reduction of meandering within a group of
obstacle is occurring only within densely packed obstacle array, i.e.
in the so called skimming flow regime, where the flow within the
street canyons is actually decouples from that in the overlying
external flow. When the distances between the obstacles is
increased and the flow within the streets interacts more with that
above, i.e. in the wake interference regime, the behavior of the
plume within the array can be very different, leading to an inten-
sification of the meandering motion on the horizontal plane. In
these configurations (Hoydysh and Dabberdt, 1994; Robins et al.,
2002) the flow becomes very sensitive to the wind direction rela-
tive to the street intersections (Soulhac et al., 2009), so that even
small asymmetries in the configuration could lead to very different
dispersion patterns (Hoydysh and Dabberdt, 1994; Robins et al.,
2002).

3. The SIRANERISK model

SIRANERISK (Soulhac et al., 2016) is an operational model for the
simulation of the atmospheric dispersion of unsteady pollutant
releases within a built environment. SIRANERISK adopts the same
parameterisations implemented in the model SIRANE (Soulhac
et al., 2011), namely: the turbulent transfer between the canopy
and the overlying boundary layer (Salizzoni et al., 2009; Soulhac
et al., 2013), the channelling along the street axes (Soulhac et al.,
2008) and the turbulent exchanges at street intersections
(Soulhac et al., 2009). In the boundary layer above the urban can-
opy, the flow is modelled by means of the Monin-Obukhov simi-
larity theory and dispersion by means of a Gaussian puff model.

To deal with unsteady releases, the model presents two main
differences compared to SIRANE: i) the dispersion above roof
height is simulated by means of a Gaussian puff model, and ii) the
mass balances within the street network are computed over control
volumes that are smaller than those of a street canyon and whose
size can be varied with time.

Here, we briefly present some of the results concerning the
validation of the model on a limited number of receptors, whose
positions are specified in Fig. 3, and which will be subsequently
used to discuss the performance of the inverse model. For an
exhaustive discussion the reader is referred to Soulhac et al. (2016).

Fig. 1. Overview of the two configurations, a) configuration R20: releases within a turbulent boundary layer over a rough surface; b) configuration B50: releases within an idealised
urban neighbourhood district overlain by a turbulent boundary layer.
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We show in Fig. 4 and Fig. 5 the comparison of the concentration
signals numerically simulated by SIRANERISK and the experimental
results, i.e. the ensemble average of 100 realisations of the same
release in the wind tunnel (Soulhac et al., 2016).

As discussed in detail in Soulhac et al. (2016), for the R20
configuration (boundary layer over a rough wall), SIRANERISK
reliably predicts the arrival time of the concentration peaks at any
downstream location. The model is less accurate in estimating the

peak values of the concertation signal and the spatial distribution of
the concentration within the puff as it travels downstream (Fig. 4).
For the B50 configuration (dense urban canopy), SIRANERISK re-
sults are less accurate and show higher discrepancies with the
experimental data (compared to the R20 configuration). Note also
that within the canopy the simulated time dependent concentra-
tions exhibit significant fluctuations. These are the product of the
discretisation in time of the advection of pollutant puffs along the

Fig. 2. a) time-dependent concentration signal registered at the source during a release in the R20 configuration; b) definition of characteristic puff advective time tmax and
characteristic time of the longitudinal puff spread (tend e tbeg). Time-evolution of the concentration signals registered downwind of the source: comparison between turbulent
signals and ensemble-averaged signals; c) and d) examples of measurements for the R20 configuration; e) and f) examples of measurements for the B50 configuration.
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network of street.
In this latter case, the model tends to capture well the arrival

time of the concentration peaks for all receptors (Fig. 5). However,

the value of the maximal (ensemble-averaged) concentration is
generally slightly overestimated by the model. This is likely to be
due to an underestimation of the longitudinal dispersion of the

Fig. 3. Positions of the source and of the receptors (red) used in the inversion for both experimental configurations R20 (a) and B50 (b). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Comparison between experimental (black) and SIRANERISK predictions (red) for dispersion for configuration R20 (rough boundary layer): evolution of the non-dimensional
concentration C* at different receptors as a function of non-dimensional time t* and real time t. Concentrations C* and time t* are made dimensionless on adopting d as a length scale
and U∞ as a velocity scale. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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pollutant puff within the canopy (Soulhac et al., 2016). In particular,
results for the receptors closest to the source, i.e. B1 and B2, show
differences between numerical and experimental results that
exceed 100%.

4. Inverse method

The formulation of the inverse algorithm takes advantage of the
linearity linking the flow rate emitted at the source Q and the
passive scalar concentrations Cobs measured at a given receptor.
Considering multiple sources and receptors, and assuming steady
state conditions, in its general formulation the problem leads to a
system of m equations and n unknowns:

CobsðmÞ ¼ ATCðm;nÞ � QðnÞ (1)

where the Atmospheric Transfer Coefficient ATC (m, n) is the
mathematical operator that models the physical mechanisms that
are responsible for the dilution of the pollutant concentration in the

atmosphere, and that characterise the contribution of each of the n
sources Q on the concentrations Cobs measured at each of the m
receptors.

Here we use (1) in order to estimate Cobs measured at m
different time steps at a single receptor and emitted by a single
source, at n different time steps. In this unsteady formulation of the
problem and in order to run the inverse algorithm, we need to set
four different timescales:

i) the time TS over which the signal at the source is
reconstructed;

ii) the time TR over which the signal at the receptor is
registered;

iii) the time step Tc fixing the sampling frequency fc ¼ 1/Tc of the
signal registered at the receptor; and

iv) the time step Tq fixing the frequency fq ¼ 1/Tq at which the
flow rate at the source is reconstructed.

The n ¼ Ts/Tq unknowns are therefore the values of Q at the n

Fig. 5. As for Fig. 4 for configuration B50. Concentrations C*, time t* and distance x* are made dimensionless on adopting H as a length scale and UH as a velocity scale.
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different time steps, reconstructed by means of m ¼ TR/Tc obser-
vations, sampled from the concentration signal registered at a given
receptor. Note that, once Tc is defined, then the average number of
the representative observations on one single signal, can be roughly
estimated as

mobs ¼
tend � tbeg

Tc
(2)

where the difference tend� tbeg is ameasure of the longitudinal time
spread of the ensemble-averaged puff (see Fig. 2b).

Each column in (1) therefore contains the contribution of the
emission at a single time step on all m time steps at the receptor.
Each row contains information about the contribution of the
emissions occurring at all n time steps on a single time step at the
receptor.

Note that, since our objective here is confined to estimate the
amount of the total mass ejected, and not the full reconstruction of
the emission as a function of time, we do not impose any constraint
concerning the positivity of the flow rate at the source.

4.1. Tikhonov regularization

In real case scenarios, where a series of input data can be
affected by large uncertainties or lack of data for significant time
delays, inverse problems are often mathematically ill-posed. It is
well known (Enting, 2002) that when the problem is ill-
conditioned, small uncertainties in the input data (or in the
model parameters) can induce large errors in the estimate of the
source conditions. For this reason, least-squares algorithms are
often coupled with other optimization methods, such as quasi-
Newton (Krysta et al., 2006; Rudd et al., 2012), conjugate gradient
or Levenberg-Marquard methods (Cort�es et al., 2009; Naveen et al.,
2010; Pujol, 2007).

To minimise these uncertainties, we use here the Tikhonov
regularization method (Tikhonov and Arsenin, 1977), which has
been chosen because of its reliability (Skaggs and Kabala, 1995),
despite its implementation being more complex than that of other
similar methods such as the stabilisation techniques (Lattes and
Lions, 1969).

The Tikhonov regularization method is based on the

minimisation of a cost function of the form:

J ¼
���Cobs � CTA� Q

���2
ℝnC

þ ε
2GðQÞ (3)

where ε is the regularization parameter and G(Q) is the penalization
term, which is often expressed in a quadratic form as:

GðQÞ ¼ ��D� �
Q � Qpriori

���2 (4)

with Qpriori the a priori solution, imposed as a constraint, and D the
regularization operator, whose determination has been the object
of several studies (Bruneau et al., 1991; Cullum, 1979; Neumaier,
1998). Following Bocquet (2010), we assume hereafter that the
operator D is equal to the identity matrix. Note that (3) assumes
that all observations are of equal value, since these will be here all
collected by a same receptor. Conversely, when dealing with
observation obtained from a variety of receptors it may be suitable
to introduce weighting factors for different sets of data (Rudd et al.,
2012; Abida and Bocquet, 2009).

The value of the function J in (3) varies between that provided by
a least-squares method, when ε is very small, and the a priori so-
lution, when ε is very large. The a priori information Qpriori is often
unavailable in a real case scenario of accidental releases. In these
cases, according to Davoine and Bocquet (2007) andWiniarek et al.
(2012), it is therefore convenient to discard Qpriori from the
formulation of the cost function, i.e. to set Qpriori ¼ 0, which then
reduces to:

J ¼
���Cobs � CTA� Q

���2
ℝnC

þ ε
2kQk2ℝnC : (5)

Note that imposing Qpriori ¼ 0 is likely to lead the inversion al-
gorithm in generally underestimating the value of Q, rather than in
overestimating it.

The minimum of (5) is computed by imposing:

VJ ¼ �2
h
CTAt � Cobs �

�
CTAt � CTAþ 2ε2I

�
� Q

i
¼ 0 (6)

which implies that the optimal solution is equal to:

Fig. 6. Estimate of the optimal value of the regularization parameter ε. a) typical plots of the L-curve method; b) example of L-curve for inversions performed with a signal
registered at a fixed receptor in the B50 configuration.
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Q ¼
�
CTAt � CTAþ ε

2I
��1 � CTAt � Cobs: (7)

Note that the solution depends on the regularization parameter
ε, whose value has to be determined by imposing a balance be-
tween the two terms of the cost function (5).

In recent years, several authors proposed methods to determine
the optimal value of ε (Calvetti et al., 2004, 2000; Chamorro-
Servent et al., 2011; Engl and Grever, 1994; Hansen, 2000;
Krawczyk-Stando and Rudnicki, 2007; Zhu et al., 2011). These can
be essentially divided into two groups (Bouman, 1998): a posteriori
methods and heuristic methods. We adopt herein a heuristic
method based on the L-curve approach (Calvetti et al., 2000;
Hansen, 2000, 1992; Hansen and O'Leary, 1993; Zhu et al., 2011)
that has been widely used for inverse problems related to atmo-
spheric pollutant dispersion (Davoine and Bocquet, 2007; Krysta
et al., 2008; Winiarek et al., 2012).

This method allows the regularization parameter to be deter-
mined from the L-shaped curve (Fig. 6) that expresses, in loga-
rithmic scale, the evolution of the error kQk due to the
regularization as a function of the noise intensity of the sig-

nal
���Cobs � CTA� Q

���. Hansen and O'Leary (1993) and Hansen

(2000, 1992) showed that the optimal value ε
opt ensures a good

balance between the effects of regularization errors due to the

noise of the signal, i.e. it minimizes both kQk and
���Cobs � CTA� Q

���.
The optimal value ε

opt can be determined by drawing the �1 slope
line and tangent to the curve (green dashed curve in Fig. 6a). In this
study, this approach has been implemented numerically by
reconstructing the L-curve with different values of ε > 0. As an
example, we show in Fig. 6b the L-curve plot of one of the receptors
studied.

Note that adding the regularization term ε
2kQk2ℝnC in the

formulation of the problem has two main implications in its
mathematical solution:

i) it dampens the effect of the fluctuations in the signal;
ii) it provide a furthermathematical constrain to the solution of the

problem. This implies that, once fixed ε
opt, (6) has a unique so-

lution even in the case in which the number of unknowns of the
problem exceeds the number of observation, a case inwhich the
least-square problem would lead to infinite solutions.

To enlighten the importance of a regularization method, we
present some preliminary results, with and without its inclusion in
the inverse algorithm. Results refer to the inversion of i) a synthetic
concentration signal, i.e. provided by the directmodel, representing
an ensemble average over an infinite number of realisations, and ii)
an ensemble-averaged signal, i.e. obtained averaging the 100 sig-
nals registered, at a fixed receptor, during the passive scalar release
experiments.

A comparison between the evolution of the flow rate at the
source computed by the inverse model and the actual flow rate is
presented in Fig. 7a and b for the synthetic and the ensemble-
averaged signal, respectively. Despite some fluctuations, whose
amplitude is about 10% of the intensity of the signal, the flow rate
computed from the synthetic signal is accurate (Fig. 7a).
Conversely, the solution of the inverse model applied to the
ensemble-averaged signal (Fig. 7b) exhibits fluctuations whose
amplitude can attain 1000% of the average value of the signal. Note
that the level of the fluctuations of this experimental ensemble-
averaged signal is significantly damped compared to that of a
turbulent signal registered during one single realisation of the
dispersion process (see Fig. 2cef). This example therefore provides
clear evidence of the high sensitivity of the least squares solution
to fluctuations in the input signals, even when these are tiny
compared to the turbulent fluctuations registered within a single
realisation of the dispersion process (see Fig. 3cee): a small
amplitude noise prevents the least squares method providing
insight on the flow rate at the source. This shows the need for a
regularization method to mitigate the effects of noise and improve
the quality of the results.

Fig. 7. Results of the inversion based on a simple least squares method, i.e. without using a regularization method, applied to a) synthetic observations provided by the SIRANERISK
model (red) and b) an averaged signal computed from 100 realisations of the dispersion process registered in the wind tunnel experiments (blue). Results are compared to the actual
emission flow rate (black dashed line). Signals refer to the R20 configurations, receptor R2. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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5. Results

We test the reliability of the inverse model to estimate the mass
flow arte at the source, using concentration signals registered at
different receptors, whose positions are indicated in Fig. 6. For each
receptor, we apply the inverse algorithm for each signal registered
during each of the 100 releases. We also apply the inverse algo-
rithm to the ensemble-averaged signals. As reference settings we
also adopt Tq¼ 4s and Tc ¼ 5s. Sensitivity to varying Tq and Tcwill be
examined in Section 5.3. Values of TS and TR are assumed to be
much larger than the emission time TE (see Fig. 2a) and of the
typical puff advection time, respectively.

Before going into the details of the results of the two configu-
rations, we present an example (Fig. 8) of the inverse algorithm
applied to the ensemble-averaged concentration signal and to the
100 turbulent signals for the receptor R2 (see Fig. 3). In Fig. 8 we
plot the evolution of the flow rate qest(t), normalized by the real
flow rate qtrue(t), predicted by inverting the ensemble-averaged
signal (red), the average (blue), and the minimal and the maximal
values (grey) of the 100 flow rates predicted by inverting the single
realisations. The plot shows three main features:

- the inversion of the ensemble-averaged signal is very similar to
the mean of the signals obtained inverting the turbulent signals;

- the maximal error in the prediction of the flow rate from a
turbulent signal is of order 100%;

- the flow rate value is not bounded at zero, since we have not
imposed a positivity constraint in the problem formulation.

To quantify the error in the predictions of the inverse model we
adopt two statistical indices to estimate a ‘local’ and a ‘global’ error.
The ‘local’ error is quantified by the Normalized Mean Square Error
(NMSE):

NMSE ¼

2
6664

1
n
Pn

ti¼1

�
qtitrue � qtiest:

�2
1
n
Pn

ti¼1

�
qtitrue

�
1
n
Pn

ti¼1

�
qtiest:

�
3
7775; (8)

and reflects the uncertainties in the form of the reconstructed
signals representing the time evolution of the emission at the
source.

The ‘global’ error, referred herein as the Relative Error on the
Quantity of Mass (ERQM), is computed as:

ERQM ¼

0
B@
0
B@

Z tf

t0
qtitrue � Dt �

Z tf

t0
qtiest: � Dt

1
CA� 100

1
CA

Z tf

t0
qtitrue � Dt

(9)

and reflects the uncertainty in the estimate of the total mass of
pollutant released.

In the literature (Chang and Hanna, 2004), it is generally
assumed that for a direct dispersion model to perform well, it re-
quires values of the local error NMSE � 4. We adopt herein the
same reference for the inverse model and we fix a reference value
of 0.5 for the ERQM.

5.1. R20 configuration e dispersion above sparse city districts

We show in Fig. 9 the probability density function (PDF) of the
global (ERQM) and local (NMSE) errors, respectively, obtained from
100 source flow rates computed by themodel. In the graphs we also

plot the average error (computed by averaging the errors of each of
the 100 realisations) and the errors of the inversion of the
ensemble-averaged signal.

The results show that the algorithm generally provides satis-
factory information on the total mass of pollutant released. Indeed,
the ERQM is always lower than 100%, a result that reflects the
tendency of the inversion algorithm in underestimating Q, rather
than overestimating it (see Section 4). The PDFs of the ERQM are
generally positively skewed, except for R5, whose form is less
defined compared to that of the other receptors. The ERQM of the
ensemble-averaged signal is always lower than the mean of the
ERQMof the turbulent signals, the former being always close to 20%
and the latter close to 40%.

The NMSE (i.e. the uncertainty on the form of the signals) is
generally acceptable. Its PDFs are also positively skewed, with
almost 60% of the values of NMSE�1. This is probably reliant on the
receptors being in the 'core' of the dispersing plume, therefore al-
ways intercepting it over the time the signals are recorded.

Results for varying lateral positions of the receptors (the direc-
tion Y) show that the overall trends of the PDF are similar at R1 and
R2 (at x* ¼ 2.5) and at R3, R4 and R5 (at X* ¼ 5). For two receptors
whose positions are symmetrical with respect to thewind direction
axis, the results provided by the ensemble averages are almost
identical (R3 and R5), whereas this is not the case for results ob-
tained inverting the time-averaged concentration signals.

When analysing the PDFs of the NMSE it appears that the quality
of the results is improved when inverting the signal registered far
from the source. The PDF of the NMSE is considerably improved
(but not that of the ERQM), i.e. shifted towards lower values, for R3,
R4 and R5, compared to that of R1 and R2. Note that these differ-
ences cannot be attributed to the performance of the direct model.
As shown in Fig. 4, the best agreement between the model and the
experimental results is actually observed in the near field, i.e. at R1
and R2, whereas results in the far field, especially at R4 and R5, are
characterised by larger discrepancies between the two. In other
words, when reconstructing the form of the source flow rate, the

Fig. 8. Time evolution of the (non-dimensional) flow rate at the source. Comparison
between the actual flow rate (black dashed line), the flow rate provided by the
ensemble-averaged signal (red continuous line) and the average of the results of the
instantaneous signals (blue dotted line). The error bars are delimited, at each time step,
by the maximal and the minimal value of the flow rate among the 100 values obtained
by inverting the 100 turbulent signals. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

N. Ben Salem et al. / Atmospheric Environment 148 (2017) 266e281274



Fig. 9. PDF of the global (ERQM) and local (NMSE) error in the inverse model predictions for the R20 configuration. The red dotted line indicates the average error of the inversion of
the turbulent signals and the continuous blue line indicates the error obtained by inverting the ensemble-averaged signal. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 10. As for Fig. 9, for the configuration B50.
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inverse model provides better results for the receptors at which the
direct model is shown to provide less accurate results. The reason
for the improved accuracy of the prediction of the source flow rate
by the inverse model can be reasonably attributed to the lower
intermittency, which characterises the turbulent concentration
signals registered away from the source, where the meandering
motion is less effective.

5.2. B50 configuration - dispersion within a dense city district

Results for the B50 configuration, i.e. the idealised urban district,
are given in Fig. 10, where we show the PDFs of the ERQM and
NMSE provided by the sample of 100 results obtained by the cor-
responding turbulent concentration signals.

The first aspect to note is the significant improvement in the
results compared to the R20 configuration. Except for the ERQM of
B2, both the PDFs of the ERQM and of the NMSE of the B50 re-
ceptors are characterised by lower values compared to their ana-
logues in the R20 configuration. In particular it is impressive how
the NMSE values are reduced compared to the previous case ana-
lysed. Notably, the NMSE PDFs in Fig. 10 are all characterised by
values � 1 (with most of them � 0.5).

The worst results are observed in the near field, i.e. at receptors
B1 and B2, where the predictions of the direct model actually show
significant discrepancies with the experimental results (see Fig. 5).
This is particularly evident when analysing the PDFs of the ERQM.
Differently from those of the other receptors, which are clearly
positively skewed, the PDFs of the ERQM for B1 and B2 are normally
distributed, with mean values that are larger than those for re-
ceptors B3eB6.

However, when analysing the accuracy in the prediction of the
form of the signal at the source, i.e. the NMSE, the results are also

surprisingly good for the receptors B1 and B2 (compared to their
analogues in configuration R20, i.e. at receptors R1 and R2). Even in
this case, the reasons for this higher accuracy can be reasonably
attributed to the lower intermittency of the concentration signals
registered in the B50 configuration, compared to the R20 configu-
ration (see Fig. 2). This result highlights a major aspect of the per-
formance of the inverse model. Its reliability in reconstructing the
source flow rate is actually only partially related to the accuracy of
the direct model, which, it is worth remembering, is only able to
predict the ensemble-averaged concentration signal. Conversely, its
ability to estimate the source flow rate is greatly affected by the
intermittency of the signal.

5.3. Sensitivity tests

Finally, we test the sensitivity of the results to varying time-
scales Tc and Tq, i.e. to the frequency of the signals reconstructed at
the source fq ¼ 1

Tq
and the sampling frequency of the receptor fc ¼ 1

Tc
.

In particular, we focus on the influence of the ratio between the
two, i.e.

t ¼ Tc
Tq

¼ fq
fc

(10)

for different values of the ratio Tq/TE. The analysis, which is per-
formed with signals registered at a fixed receptor (R2, see Fig. 3)
allows us to evaluate the effect on the accuracy of the prediction
induced by the limited sampling frequency of the in-situ
instruments.

We show in Fig. 11, results for Tq
TE
¼ 4

68 and two differentt ¼ Tc
Tq
.

Note that PDFs for t¼ 1.25 are the same as those presented in Fig. 9

Fig. 11. PDF of the local (NMSE) and global (ERQM) errors in the predictions of the total mass ejected, from the signal registered at the R2 receptor (R20 configuration), with Tq ¼ 4s.
The red dotted line indicates the average of the errors of the turbulent signal, and the continuous blue line indicates the error provided by the ensemble-averaged signal. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(second row). This latter result is compared to the case t ¼ 2.5, i.e.
of a halved sampling frequency at the receptor. Halving the sam-
pling frequency leads to a significant deterioration in the results.
The relative errors of the total mass do not exceed 100%, but their
mean is almost doubled (by approximately 70%) and their values
are all larger than 40%. Also, the values of the NMSE are all shifted
toward larger values and their mean becomes larger than the
threshold of 4, with peaks of almost 20.

A very similar behavior is observed for both a reduced 2/68

(Fig. 12) and an increased 20/68 (Fig. 13) ratio Tq
TE
. In both cases we

compare results for t ¼ 1 and t ¼ 2. Note that this latter value can
be considered as a threshold to adequately describe the temporal
variations of the source strength according to the Shannon-Nyquist
sampling theorem, which prescribes a minimal sampling frequency
fc > 2/TS.

Plots in Fig. 12a are very similar to those in Fig. 11a, showing that

reducing the ratio Tq
TE
by a factor of two has little effect on the quality

of the data, as long as Tq is significantly smaller than TE. Conversely,
as Tq approaches TE, both local and global errors show a general
trend to increase, even for low t (Figs. 12 and 13).

In all cases analysed, we observe that the quality of the results
deteriorates as t � 2, i.e. as the frequency of the reconstructed flow
rate becomes larger than twice the sampling frequency of the
concentration signal. In this case (see Figs. 11a and 12a), most of the
global errors (ERQM) exceed 50%, and the local errors (NMSE)
exceed the threshold value of 4.

Results for the ensemble-averaged signals (continuous blue
line) are generally (much) better than those for the mean of the
results obtained inverting the instantaneous signals (dotted red
line). However, for t � 2, the error associated with the ensemble-
averaged signals gradually approaches that of the mean of the

error obtained by inverting the turbulent signals.
In a general way, and as expected, we can therefore conclude

that the quality of the results deteriorates when reducing Tq and
increasing Tc. We can however note that the effect of filtering the
input data, i.e. increasing t, is reduced when considering the global
error (ERQM) rather than the local error (NMSE).

Reducing Tq (for a fixed Tc) leads to a deterioration in the results
because of the limitations of the method in solving problems with a
number of unknowns that exceed the input data, i.e. n [ m.
Increasing Tc (for a fixed Tq) leads to a deterioration in the results
since it implies a reduction in the number of representative ob-
servationsmobs of the concentration signals used to reconstruct the
flow rates, implying a loss of information for use in the recon-
struction of the flow rate.

As shown in Fig. 14, the reduction of mobs has a direct impact on
both statistical indices ERQM and NMSE. For the same number of
observations, the reliability of the algorithm deteriorates as Tq de-
creases (and therefore fq increases). However, this tendency varies
significantly for varying mobs. Even though the trend of ERQM and
NMSE as a function of mobs is very similar in the different cases
analysed, we cannot define a threshold value ofmobs, which ensures
good quality results for any Tq. Nevertheless, in the case here
considered, for mobs ¼ 32 results are satisfactory (Fig. 14b), ac-
cording to both the values of the global, i.e. ERQM, and the local
error, i.e. NMSE.

6. Discussion and conclusions

We have presented the results of inverse atmospheric disper-
sion modelling of unsteady pollutant emissions. The objective was
to evaluate the ability of the inverse algorithm to estimate the mass

Fig. 12. As for Fig. 11, with Tq ¼ 2s.
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flow rate of an impulsive source of pollutant from turbulent con-
centration signals, measured in wind tunnel experiments, above a
sparse city district (configuration R20) and within a dense urban
canopy (configuration B50). The turbulent signals were inverted by
adopting a least squares algorithm coupled with the Tikhonov
regularization method.

The inverse model was applied using as input data the turbulent
concentration signals registered at a fixed receptor and the corre-
sponding ensemble-averaged signals (averaged over 100 realisa-
tions), and adopting as a direct model, SIRANERISK, which
simulated the dispersion of unsteady releases with a street network
approach. The comparison of the results obtained using these two
types of input data provides useful insight into the reliability of an

inverse algorithm in real case scenarios, when the algorithm is
applied to turbulent signals using atmospheric dispersion models
based on the concept of ensemble average. We have evaluated the
performance of the model by means of two statistical indices,
referred to as NMSE and ERQM, estimating a local and a global
error, respectively.

We have shown that the inverse model is generally able to es-
timate the mass released with a global error, i.e. ERQM that does
not exceed 100% in both configurations studied. Thismeans that the
model allows us to estimate the order of magnitude of the mass of
pollutant ejected, information that is more than useful when
assessing the risks related to accidental pollutant releases in a built
environment. Note that this conclusion is based on the hypothesis

Fig. 14. Changes in ERQM (a) and NMSE (b) obtained by inverting the ensemble averages based on the number of representative observations in the concentration signals.

Fig. 13. As for Fig. 11, with Tq ¼ 20s.
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of disposing of data from a from a single well-positioned sensor, i.e.
positioned in the core of the plume and returning concertation
signals that are not just noise. In real case scenarios this would
imply disposing of a network of sensor designed to ensure that at
least one is well positioned in the gas cloud.

Concerning the prediction of the time-evolution of the source
flow rate, the performance of the inverse model seems to be more
sensitive to the level of intermittency and/or the intensity of fluc-
tuation of the turbulent signals rather than to the accuracy of the
direct model. Namely, according to the PDFs of the NMSE, the
performance of the model was shown to be better for signals
registered within a dense urban canopy (B50) than for signals
registered over a rough surface (R20), even though the predictions
of the direct model were generally better for the latter configura-
tion rather than for the former. Notably, in the dense urban canopy
configuration (B50), the NMSE values are shown to be lower than 1,
with a global error on the total mass of generally lower than 50%.
These results strongly support the use of such a modelling
approach for operational purposes and for the management of risks
due to accidental pollutant releases in a built environment.

Finally, we tested the sensitivity of the inverse method to the
sampling frequency fc of the registered concentration signal used as
an input, and of the frequency fq at which the variation of the flow
rate at the source was reconstructed. These showed a deterioration
in the reliability of the algorithm for decreasing fc and increasing fq.
Reducing fc can indeed significantly reduce the number of repre-
sentative observations used in the inversion and therefore result in
a lack of information for use in the inversion. These features pro-
vide important information on the sampling cut-off frequencies of
the instruments adopted to build the monitoring network.
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Chapter 10

Conclusions and perspectives

The research activities leading to the results presented in the previous chapters constitute a body of
work which provide the foundations for further ongoing research work. In what follows, we draw some
preliminary conclusions and outline the main perspectives of these activities.

Despite the increasing power of computers, that open the field to highly resolved (in space and time)
numerical simulations, experiments on turbulent dispersion remain very attractive when dealing with
flows at high Reynolds number and bounded by solid rough walls, or flows developing within groups
of obstacles. Results presented herein highlight the importance of handling ‘classic’ experimental
techniques for the investigations of these flows, such as Particle Image Velocimetry, hot-wire (HWA)
and Laser-Doppler Anemometry (LDA) for velocity measurements and of a Flame Ionisation Detector
(FID) for concentration measurements. These kinds of techniques give direct information on turbulent
fluxes of mass and momentum, with a significant spectral resolution, therefore providing essential
information for the formulation of turbulent closure models for numerical schemes.

Interesting perspectives in the exploitation of these techniques are given by combining the FID
system with HWA or LDA, to obtain direct information on the mass scalar fluxes uic. Although not
new, this approach has been rarely used to date. An example of results provided by this approach is
given in fig. 10, and concerns the dispersion of a passive scalar in a turbulent boundary layer. In the
near future we plan to adopt this same technique to study atmospheric dispersion of dense gases1, in
a project funded by Air Liquide.

New perspectives on experimental research are today given by the development of visualisation
techniques, such as stereographic and holographic PIV, which will allow access to a description of
the flow over a full three-dimensional domain. Major advances in the study of turbulent dispersion
require, however, the development of new techniques to fill a main lack in experimental data, that of
Lagrangian flow statistics. We may expect that recent progress on nano-technologies would provide
new perspectives for their conception and exploitation.
At the same time, the increase in the computer power makes numerical simulations more and more
attractive. As discussed in chapter 8, Direct Numerical Simulations of turbulent unbounded flows, such
as jets and plumes, can be already considered as more reliable than experiments for the investigation
of the basic mechanisms driving dispersion in these flows. The use of Large Eddy Simulations (LES) is
more controversial. The impossibility of discerning the influence of the sub-grid model on the results
is a major limitation for its use in fundamental studies. Conversely, LES simulations are today an
extremely powerful tool for the simulation of flows in complex geometries, such as urban canopies
and buildings. They provide a major contribution for the formulation of operational models, as they
provide information that is extremely difficult to obtain experimentally (such as the turbulent fluxes

1These can be easily simulated in wind tunnel experiments by injecting mixtures of carbon dioxide and air. The
small differences of molecular diffusivity in air of carbon monoxide and ethane allow the latter to be used as a tracer
gas, whose concentration, measured with a FID, provide information to estimate the local fluid density.
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a) 

b) 

Figure 10.1: Dispersion of a passive scalar released from a line ground-level source in a turbulent
boundary layer: examples of results (PhD of H. Gamel, 2015) combining FID and LDA probes. a)
Wind tunnel set-up. b) Vertical profiles of longitudinal mass fluxes and mean concentration gradients
enlightening the counter-gradient scalar transport.

of mass and heat).

Highly resolved numerical simulations and new experimental techniques will enable us to obtain
more and more spatial and temporal details on the structure of turbulent flows. On the other hand,
there is an increasing need to use dispersion models to estimate the impacts of air pollution over large
domains and long periods. This need opens interesting perspectives in constructing multi-disciplinary
research studies.

Current preoccupations with the impact of air pollution on health will inevitably lead to increasing
demand for coupling dispersion and air quality modelling with epidemiological studies, and my current
research with the Cancer and Environment group of the Centre Léon Bérard in Lyon gives a first
indication of what might be possible. These project, named GEO3N and XENAIR, aim at estimating
the impact of different kind of pollutants on breast cancer, and use the SIRANE model, developed at
the LMFA, as a predictive tool to quantify scores of exposure to air pollution (see fig. 10).

Such studies will also inevitably require an evaluation of the economic costs of air pollution and
possible remedial measures, making it necessary to integrate economic modelling into these multi-
disciplinary modelling systems. The collaboration already established through the Masters RISE with
researchers specialised in the economic aspects of environmental risk should prove invaluable in devel-
oping this aspect. Finally, sensor technology and internet connectivity is developing at such a rate that
one can envisage that, in the near future, individuals will begin to act as real-time sensors, feeding
pollution data into real-time air-quality models. This is already happening, to a limited extent, in
some cities, though smart phone applications, and IBM has already expressed an interest in funding
some pilot studies of large-scale distributed monitoring systems in the environment.

244



2002 2008 

1 

Figure 10.2: Ground level annual mean average dioxin concentration over the city of Lyon, simulated
with the SIRANE model. Results of the GEO3N project in collaboration with the Centre Léon Bérard
(PhD of T. Coudon).
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