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Abstract: Lagrangian dispersion models require estimates of the local 
dissipation rate (ε) of turbulent kinetic energy (k). In this study, we evaluate the 
sensitivity of a Lagrangian model to different estimates of ε in simulating 
passive scalar dispersion in a turbulent boundary layer over a rough surface. 
Two different estimates of ε are used to simulate pollutant dispersion emitted 
by a linear elevated source with a Lagrangian model which integrates a 
macromixing and a micromixing scheme. Comparison between numerical and 
experimental results allows us to discuss the performance of the model and to 
define its sensitivity to ε. 
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1 Introduction 

The impact assessment of an accidental release of toxic or inflammable substances into 
the atmosphere would require the computation of the probability density function of their 
concentration (fC) close to the source, or at least the estimation of the first moments of  
fC – in practice we could refer to the mean and the variance. 

Lagrangian micro-mixing modelling seems to provide a valid numerical tool  
in estimating concentration fluctuations. In this context, several dispersion phenomena 
have been studied: 1D scalar dispersion in grid turbulence from line or area sources 
(Sawford, 2004) and for multiple reacting pollutants (Sawford, 2006); 1D multiple scalar 
dispersion in convective boundary layers from area sources (Luhar and Sawford, 2005); 
2D dispersion from point or line sources in neutral boundary layers (Cassiani et al., 
2005a; Amicarelli et al., 2011), in convective boundary layers (Cassiani et al., 2005b), 
and from single or multiple sources in canopy turbulence (Cassiani et al., 2007; Dixon 
and Tomlin, 2007); 3D dispersion in canopy turbulence (Amicarelli et al., in press).  
These models usually require local estimates of k and its dissipation rate ε.  
Direct measurements of ε are not easy to achieve, even in laboratory experiments. 
Therefore, this quantity is usually estimated indirectly, assuming a series of simplifying 
assumptions. Several procedures have been adopted to obtain this input parameter, to 
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feed micro-mixing models. Sawford (2006) refers to analytical formulations; Luhar and 
Sawford (2005) and Cassiani et al. (2005a, 2005b) use some parameterisations derived 
from similarity theories; Dixon and Tomlin (2007) adopt estimations provided by k-ε 
schemes of Reynolds’ average models; Cassiani et al. (2007) use equation (8), as 
discussed in the following. 

In this paper, we test the sensitivity of LAGFLUM (LAGrangian FLUctuation Model; 
Sapienza University of Rome; Leuzzi et al., in press; Amicarelli et al., in press), a 
Lagrangian code integrating a macromixing and a micromixing scheme, to different 
approximations in the estimation of ε. These were derived using the meteorological 
measures obtained during a laboratory experiment simulating pollutant dispersion in a 
neutral atmospheric boundary layer (Salizzoni et al., 2008, 2009a). In the following 
paragraphs, capital letters refer to Lagrangian quantities. Eulerian averaged variables are 
indicated with small letters, whereas the apex indicates fluctuating quantities. Overbars 
denote time averaging and brackets ensemble averaging. 

2 LAGFLUM: a Lagrangian model for concentration fluctuations 

The numerical model LAGFLUM combines a macromixing and a micromixing 
Lagrangian scheme to compute the mean and the standard deviation of the concentration 
of a passive scalar. The mean concentration is estimated during the first computational 
phase by the macromixing scheme, while the concentration variance is obtained by the 
micromixing scheme in a second computational step using the already-computed mean 
concentrations. 

The macromixing scheme is based on the so called ‘well-mixed’ condition and 
describes the motion of marked fluid particles. As pointed out by Pope (1998), for high 
Reynolds numbers, the mean concentration and the mean conditioned on the velocity are 
unaffected by the value of molecular diffusivity. Therefore, polluted fluid particles which 
do not exchange pollutant mass with the surrounding ones can be used to estimate the 
averaged concentrations. This condition ensures well-founded behaviour of the model in 
inhomogeneous turbulence. The macromixing scheme is based on the following set of 
stochastic equations (Thomson, 1987): 

( ) ( )d , , dt , , di i ij jU a X U t b X U t ξ= + , d dt,i iX U=  (1) 

where Ui and Xi indicate the particle velocity and position respectively, while dξj are the 
increments of independent Gaussian Wiener processes with mean zero and variance dt  
(as used in Thomson, 1987). Here, the subscripts refer to the axis direction. The functions 
ai and bij in stationary conditions can be calculated as follows: 
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where ui is the i-component of the mean velocity vector, C0 is the Kolmogorov constant, 
assumed equal to 2 (according to Cassiani et al., 2007), ga is the probability density 
function of the Eulerian velocity, δij is the Kronecker delta, Vij is the one-point velocity 
covariance matrix (whose elements are the velocity variances and co-variances), which is 
approximately diagonal. Einstein’s notation is applied to all the subscripts but ‘i’. 

It is worth noting that the dissipation rate ε is assumed as an input of the model 
(together with the means and the standard deviations of velocity), and it is used to 
compute both the ‘drift’ term ai and the stochastic term bi (equations 1–3). 

105 particles have been released, to calculate both the mean <C|x> and the conditional 
mean concentration <C|U,x>. This represents the mean concentration of a sub-ensemble 
of virtual realisations of the dispersion phenomenon, approximately sharing the same 
instantaneous velocity field at a certain position (and time). This parameter is in some 
ways representative of a locally space-averaged concentration, related to an instantaneous 
plume. Then it rules the actual molecular diffusion fluxes, much better than the mean 
concentration. <C|U,x> is finally used to compute the instantaneous concentration C  
of each fluid particle, adopting the micromixing scheme IECM (Interaction by the 
Exchange with the Conditional Mean; Sawford, 2004(a); Pope, 1998): 

d /dt ( | ) ,mC C C t= − − < > /U, x  (4) 

where tm is the mixing time scale (using the formulation from Amicarelli et al., in press). 

3 Experimental set-up 

Experiments have been carried out at the reticulating wind tunnel of the Ecole Centrale 
de Lyon. An adiabatic atmospheric boundary layer was simulated by combining vortex 
generators at the beginning of the test section and wall roughness, which was made up by 
square bars placed normal to the wind and regularly spaced by a distance equal to the 
bars height H. The depth δ of the boundary layer was about 0.6 m, nearly ten times the 
height of the bars H=0.06 m. Velocity measurements were performed by hot-wire 
anemometry with a sampling frequency equal to 10,000 Hz, using a single X-probe.  
The passive tracer (ethane) was injected from an elevated line source, located at (xs=0.03 
m; zs=3H=0.18 m). Its pollutant mass discharge (Qs) is not available; nevertheless its 
value is not strictly necessary for this study, as the concentration measurements are scaled 
on Qs (following a common practice – Franke et al., 2008 – which renders the 
concentration values non-dimensional). Vertical profiles of instantaneous passive tracer 
concentration were measured with a Flame Ionisation Detector (FID) for increasing 
distances from the source, with a sampling frequency of about 500 Hz. Details on the 
experimental apparatus and a description of the dynamical condition of the boundary  
layer flow can be found in Salizzoni et al. (2008). Details on the passive tracer source and 
concentration measurements are given in Salizzoni et al. (2009b, in press). 

The velocity profiles, as a function of the vertical coordinate z’=z/δ, used as an input 
for LAGFLUM, are given in Figure 1. The mean velocity profile above the obstacles, i.e., 
(z’>0.1), is dependent only on the vertical coordinate z, and is measured by hot wire 
anemometry. The mean longitudinal velocity u(z) is instead well fitted within the surface 
boundary layer (SBL; 0.1<z’<0.2) by a logarithmic law: 
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where kv is the Von Karman constant, u* is the friction velocity, d is the displacement 
height and z0 is the roughness length. In our experiment, we have u*= 0.33 m/s, d=58 mm 
and z0=0.31 mm. Within the canyons, we assume a null velocity, which seems to be a 
simple approximation, but compatible with the rough spatial resolution needed.  
The profiles of the measured standard deviations of velocity are reported in Figure 2 
(right). They are homogeneous within the SBL, which seems to lie in the zone H<z’ 
<1.5–2H (this upper limit agreeing with Fischer et al. (2010) and Salizzoni et al. (2011)). 
Their canopy values (z'<1) are just a linear extrapolation of the above values, in 
agreement with the vertical evolution of the corresponding profiles of similar studies 
(Bezpalcova, 2007), related to neutral boundary layers within a regular canopy  
(no measured meteorological input for these regions were used). The peaks of σu and σw 
do not refer to the ground level, but to the obstacle tops. As we just wanted to process 
meteorological measurements to feed the dispersion model, analyse the effectiveness of 
this simplified procedure and avoid a CFD modelling of the main flow, we finally kept 
this 1D input (Salizzoni et al., 2008). Furthermore, we approximately neglect the 
correlation between the velocity components when applying the macro-mixing scheme. 

Figure 1 Vertical profile of non-dimensional (a) mean longitudinal velocity and (b) standard 
deviation of the longitudinal (σu) and vertical (σw) velocities. The dotted line indicates 
the obstacle height. See text for details 

 

Figure 2 Comparison between two independent estimates of ε*, the non-dimensional turbulent 
kinetic energy dissipation. estimate I: equation (6), estimate II: equation (7) 
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The profiles of the two estimates of the non-dimensional ε*=ε (δ–H)/U∞
3 are given in 

Figure 2. The first estimate, ε1, referred to as I estimate, is computed following Beljaars 
et al. (1987), Kitada (1987) and Detering and Etling (1985) as: 

2

1( ) 0.3 .uz k
z

ε ∂ =   ∂
 (6) 

The second estimate, ε2, referred to as II estimate, is achieved evaluating the 
instantaneous velocity gradients of the horizontal velocity adopting Taylor’s hypothesis 
and assuming the local isotropy of the turbulent velocity field: 

2

2
1( )
( )

uz
u z t

ε ν
′∂ =  ∂ 

 (7) 

where ν is the kinematic viscosity. The values within the cavities, i.e., z’<0.1, referred to 
as εc for both the simulations, have been estimated as a function of the integral 
Lagrangian time scale TL (Thomson, 1987): 

0

2 2( ) ( )
3c

L

z k z
C T

ε =  (8) 

We roughly assumed TL=H/UH. UH being the mean longitudinal velocity at roof level.  
As no meteorological input inside the canopy has been used, we can just provide a very 
approximate estimation of ε in these regions, when using equation (8). Nevertheless,  
we obtain the same kind of evolution (ε growing with z; Figure 2, z’<0.1) as Cassiani  
et al. (2007), who analogously applied the same equation. In fact, the surface  
neutral boundary layer, characterised by a constant friction velocity and a hyperbolic 
evolution of ε (decreasing with z), just lies at 0.1<z’<0.2, whilst the canyons do  
not refer to these evolutions. Figure 2 shows that the main differences between  
the two estimates are completely concentrated in the lowest part of the boundary layer 
flow, i.e., z’<0.4 and can reach a difference of about 50% close to the top of the 
obstacles. 

3 Comparison between experimental and numerical results 

An example of the simulated fields of the mean and the standard deviation of 
concentration is shown in Figure 3. The height of the maximum of the mean 
concentration slightly slows down when increasing the distance from the source, because 
of its interaction with the canopy, whose overall effect is to confine the plume, increasing 
the mean concentrations in the lowest part of the domain. As the plume is entrained 
inside the canyons, a higher turbulent mixing in these confined zones decreases the 
gradient of the mean concentration and the absolute values of the concentration 
fluctuations. The standard deviation of concentration has then lower values inside the 
canyons and at their tops. 
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Figure 3 Simulated fields of the mean (up) and the standard deviation (down) of concentration 
(estimate I) 

 

The low values of σC at the canopy top impose a sort of boundary condition for the upper 
domain, causing a corresponding reduction of the standard deviation of concentration all 
over the domain. These minima are even due to the direct interaction of the plume with 
the obstacle tops, which locally zeroes the mean concentration gradients and then the 
production rate of the concentration variance. The height related to the maximum value 
of the standard deviation along the vertical is then raised up, when increasing the distance 
from the source. In other words, the canopy acts like a sink for the concentration 
variance. 

Numerical results obtained with the two estimates of ε have been compared to the 
experimental results. Figures 4 and 5 shows some vertical profiles of the mean and the 
standard deviation of concentration. In both cases, the main differences between 
experiments and simulations can be detected close to the obstacle tops and within the 
cavities. They are only due to the differences in the estimation of ε at the top of the 
canopy (and a few levels above it). At this level, in fact, the vertical turbulent fluxes of 
concentration are revealed to be sensitive to ε. These fluxes control the concentration 
values within the canopy. Further, this sensitivity of the numerical results to the input of 
the lowest part of the boundary layer points out a significant potential source of error, 
related to the simplifying assumptions adopted during the input processing. 

Figure 4 Vertical profiles of the normalised mean concentrations C*=<c>/<c>max. Comparison 
between experimental and numerical results, at different distances from the source:  
(a) x/δ= 0.975; (b) x/δ= 1.1875 and (c) x/δ= 3.675. Squares: experiments; triangles: 
Estimate I (6); circles: Estimate II (7) (see online version for colours) 
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Figure 5 Vertical profiles of the normalised standard deviation of concentration (σc*= σc /σc max). 
Same legend as Figure 4 (see online version for colours) 

 

To evaluate the overall performances of LAGFLUM, we have also estimated a series of 
statistical indicators and compared them with the references values given by Franke et al. 
(2008), defining the state of art for a pollutant dispersion model. Namely, these are the 
fractional bias (FB, the mean relative error); the Normalised Mean Square Error (NMSE); 
the factor FAC2 (the percentage of the simulated values lying between the 50% and the 
200% of the corresponding measured values); the geometric mean (MG); and the 
Geometric Variance (VG) of the error. The comparison in Table 1 shows that the model 
satisfies most of the requirements identified by Franke et al. (2008). These overall 
metrics relate to estimation I (no relevant differences if compared to the ones obtained 
using estimation II, even because almost all the monitoring points lie above the canopy, 
where the simulations better agree). As no measurements of the absolute value of σC are 
available, we cannot finally compute the corresponding metrics. 

Table 1 Validation metrics for LAGFLUM’s mean concentration results (estimation I), 
compared with the reference values given by Franke et al. (2008) 

 FB NMSE FAC2 (%) MG VG 

Franke et al. (2008) ± 0.3 4.0 50 0.7 ÷1.3 1.6 
LAGFLUM 0.03 0.06 77 0.82 2.13 

4 Conclusions and perspectives 

We have tested the concentration fluctuation model LAGFLUM on a wind tunnel dataset, 
obtained from a 2D canopy neutral boundary layer flow. We have focused on the model 
sensitivity to the dissipation rate ε of the turbulent kinetic energy k. ε has been estimated 
using two alternative formulations, derived from simplified balance equations for k.  
The first (6) depends on the mean velocity gradient, the latter (7) on the time derivatives 
of the instantaneous velocities. These estimations usually agree, but at the top of the 
obstacles, where further investigation is needed. The results of the two corresponding 
simulations, in terms of mean and standard deviation of concentration, show their main 
differences inside the canyons. In these regions, in fact, the concentration statistics are 
ruled by the corresponding scalar turbulent fluxes at the top of the obstacles, which 
noticeably depend on ε. The results finally show how the standard deviation of 
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concentration is of the same order of magnitude as the mean, even in the presence of a 
canopy, which locally represents a sink for the concentration fluctuations. 
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