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Abstract The turbulent exchange of momentum between a two-dimensional cavity and
the overlying boundary layer has been studied experimentally, using hot-wire anemome-
try and particle image velocimetry (PIV). Conditions within the boundary layer were var-
ied by changing the width of the canyons upstream of the test canyon, whilst maintaining
the square geometry of the test canyon. The results show that turbulent transfer is due to
the coupling between the instabilities generated in the shear layer above the canyons and the
turbulent structures in the oncoming boundary layer. As a result, there is no single, unique
velocity scale that correctly characterizes all the processes involved in the turbulent exchange
of momentum across the boundary layer. Similarly, there is no single velocity scale that can
characterize the different properties of the turbulent flow within the canyon, which depends
strongly on the way in which turbulence from the outer flow is entrained into the cavity and
carried round by the mean flow. The results from this study will be useful in developing
simple parametrizations for momentum exchange in the urban canopy, in situations where
the street geometry consists principally of relatively long, uniform streets arranged in grid-
like patterns; they are unlikely to be applicable to sparse geometries composed of isolated
three-dimensional obstacles.

Keywords Atmospheric turbulence · Momentum transfer · Shear-layer flow ·
Street canyon · Urban canopy

1 Introduction

Turbulent transfer between the atmosphere and an urban or vegetation canopy determines
the concentration of a pollutant in the canopy and the characteristics of the boundary layer
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394 P. Salizzoni et al.

aloft. Consequently, several studies in recent years have been devoted to the analysis of flow
and dispersion in plant canopies over flat and hilly terrain (Finnigan 1985, 2000; Kaimal
and Finnigan 1994; Poggi and Katul 2007) or urban canopies, composed of groups of obsta-
cles with varying geometries and spacing (Soulhac 2000; Coceal and Belcher 2004; Belcher
2005; Coceal et al. 2006, 2007; Harman and Belcher 2006; Hamlyn et al. 2007; Garbero et al.
2010).

Generally the aim of these studies has been to identify the statistical properties of the
velocity field that influence the transfer of momentum, mass and heat between the canopy
and the atmosphere. Most of the studies focus on the relationship between the turbulent trans-
fer and parameters that describe the geometry of the canopy elements. The turbulent transfer
is then usually expressed as a function of porosity factors related to the building density for
cities (Grimmond and Oke 1999), or to the leaf area index for forests (Kaimal and Finnigan
1994).

However, as far as we are aware, only a few studies have investigated the influence of
the structure of the external boundary-layer on the flow in the canopy. Kim and Baik (2003)
used numerical simulations to investigate the effects of inflow turbulence in an urban canyon
flow; Louka et al. (2000) focused on the coupling between the recirculating region in the
urban canyon and the boundary-layer flow aloft; and Soulhac (2000) and Caton et al. (2003)
developed similar analytical models describing the canyon-atmosphere transfer as a function
of the turbulence intensity of the external flow.

Our study focusses on urban canopy flow and its interaction with the overlying atmospheric
boundary-layer flow, and complements the results presented by Salizzoni et al. (2009a) for
street-canyon ventilation. The investigation is limited to the case of a simplified urban geom-
etry, consisting of a series of two-dimensional street canyons. This is a drastic simplification
of real urban geometry, but it is necessary in order to clarify the basic governing mechanisms
of the phenomenon (Harman and Belcher 2006; Simoëns et al. 2007; Huq et al. 2007). The
experimental configuration was designed to simulate a neutral atmospheric boundary layer
above the street canyons, with a boundary-layer depth approximately ten times the canyon
height. This is an important feature that makes the experiments discussed here different from
those presented in other studies dealing with urban-canyon flows (Caton et al. 2003; Simoëns
et al. 2007; Huq et al. 2007).

Much of the previous work on urban canopy has focused on the role of local conditions
in determining flow and dispersion, and rather less attention has been paid to the influence of
the incoming boundary layer. But real urban surfaces are a complicated mixture of obstacles
of different sizes and orientations, with significant variations in geometric characteristics
both at the scale of the street and at the scale of the district. So, in general, the external flow
will not be in equilibrium with the conditions imposed by the local surface geometry. The
principal objective of our work is to study how conditions in the external flow affect flow
within an urban-street canyon, and how they influence exchanges between the cavity and
the external flow. The aim is then to derive scaling relationships for these properties, which
take into account the characteristics of the external flow, and which can be incorporated into
operational urban air-quality models. In particular, the results from this study (and others)
will be used to improve the parametrization of exchanges within the urban canopy in the
operational model SIRANE (Soulhac et al. 2003).

In Sect. 2 we outline the theoretical arguments used to interpret the results, with details of
the experimental set-up and techniques given in Sect. 3; the experimental results are presented
and discussed in Sect. 4 and conclusions are drawn in Sect. 5.
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2 Transfer Mechanism

It is convenient to divide the flow domain into three main regions—the external boundary
layer, the cavity and the shear layer at the interface between them. The external flow (Salizzoni
et al. 2008) behaves essentially as a classical rough wall turbulent boundary layer (Jimènez
2004) within which we can identify three distinct regions—the outer region, the inner region
and the roughness sub-layer, extending from the canyon top to the lower limit of the inertial
layer (Raupach et al. 1991). The flow within the cavity takes the form of a recirculating eddy
driven by the outer flow. The high shear levels at the top of the canyon generate a Kelvin–
Helmholtz type instability in the layer (e.g. Fig. 1) leading to the formation of large-scale
spanwise-coherent vortices that play a particularly important role in mass and momentum
transfer. So, in order to parametrize the mass and momentum transfer between the cavity and
the external flow, it is particularly important to understand the interaction between the flow
in the shear layer and the flows in the regions on either side (Huq et al. 2007).

One problem in particular is to evaluate whether the dynamics of the shear layer depend
only on the local production of turbulence or if they also depend on the dynamics of the
external boundary layer. In the former case the cavity flow would be driven directly by the
dynamics of the shear layer, which ‘shelters’ the cavity flow from the atmospheric turbulence.
In the latter case the flow within the cavity must also be influenced by the structure of the
atmospheric turbulence.

To examine this question we have focused our attention on the influence of the dynamical
conditions of the flow in the boundary layer on the flow in a canyon with a fixed square
geometry (aspect ratio ∼1). It follows from the previous discussion that there are two pos-
sible velocity scales for the flows. The first is �U—the mean velocity difference across the
shear layer—and is related to the local generation of turbulence within the shear layer. The
second is the friction velocity of the external flow, referred to as u∗, which is assumed to be
the only relevant velocity scale for the boundary-layer turbulence. We have then analyzed
the experimental data to test three hypotheses:
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Fig. 1 Experimental set-up. The dotted circle indicates the canyon within which PIV measurements were
performed. The photograph shows a flow visualization of the Kelvin–Helmholtz instability that develops at
the top of the street canyon
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1. The flow within the canyon depends only on the shear-layer dynamics, i.e. on the tur-
bulent structures arising and developing within it. All velocities within the cavity and
within the shear layer should therefore scale only on �U , the mean velocity difference
across the shear layer:

u

�U
= β1, (1a)

u′w′
�U 2 = β2, (1b)

q2/2

�U 2 = β3 (1c)

etc., where β1, β2, β3 are invariant form functions, u is the longitudinal component of
the mean velocity, u′w′ is the Reynolds stress and q2/2 is the turbulent kinetic energy
(t.k.e.).

2. The dynamics of the flow within the canyon depend only on the dynamics of the external
boundary-layer flow. All velocities within the cavity and within the shear layer therefore
scale on the friction velocity u∗. The functions β1, β2, β3 could depend on the structure
of the external flow so we can therefore write

u

u∗
= β1

(
Lww

W

)
, (2a)

u′w′
u2∗

= β2

(
Lww

W

)
, (2b)

q2/2

u2∗
= β3

(
Lww

W

)
, (2c)

etc., where W is the canyon width (Fig. 1) and Lww is a measure of the integral length
scale of the external boundary-layer flow, which we expect to be linked to the depth of
the roughness sub-layer. It is worth noting that Lww varies significantly both longitudi-
nally and vertically in the lowest part of the boundary layer so it is difficult to define a
representative value for this length scale, characteristic of the flow throughout the region.
This is discussed in detail in Sect. 4.1.

3. The dynamics of the flow within the canyon depend on both the turbulence generated
within the shear layer and the turbulent eddies in the external flow that are entrained by
the shear layer and injected into the cavity. In this case the form functions β1, β2, β3 can
be written:

u

�U
= β1

(
u∗
�U

,
Lww

W

)
, (3a)

u′w′
�U 2 = β2

(
u∗
�U

,
Lww

W

)
, (3b)

q2/2

�U 2 = β3

(
u∗
�U

,
Lww

W

)
, (3c)

etc. The two velocity scales u∗ and �U are not independent of each other, in the sense that
a change in u∗ can (and in most circumstances, will) lead to a change in �U . But the rela-
tionship between the two is not simple since it depends on other, independent, parameters,
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Table 1 External boundary-layer and shear-layer flow parameters in the four configurations (see Fig. 1)

Config. H/W H/D u∗ (m s−1) z0 (mm) d (mm) z∗/H �U (m s−1) �U/u∗

A 1 1 0.33 0.3 57 7/6 1.35 4.09

B 1 2/3 0.36 0.6 55 8/6 1.18 3.27

C 1 1/2 0.41 1.7 52 2 1.02 2.48

D 1 1/3 0.46 2.7 46 2 0.91 1.98

The boundary-layer depth δ and the free stream velocity U∞ at the top of the boundary layer do not vary
between the configurations and are equal to 0.6 m and 6.75 m s−1 respectively

including the aspect ratio of the cavity, the roughness of the cavity walls and the roughness
of the surface upstream of the cavity. In these experiments the conditions in the cavity do
not change, but the upstream the conditions do change from one configuration to another. As
a result, u∗ varies, even though U∞ is maintained constant, and as can be seen in Table 1,
an increase in u∗ results in a decrease in �U . The exact nature of the relationship between
u∗ and �U certainly deserves further study, since it will play an important role in deter-
mining exchanges within the urban canopy. However, as discussed in Sect. 4.2, it should be
remembered that the mixing layer at the top of the canopy is not exactly the same as the
standard mixing layer, and that �U is therefore not exactly the same as that usually used to
characterize laboratory mixing layers.

For completeness, we also present the data normalized with U∞, the velocity at the top of
the boundary layer. However, since U∞ is identical in all four configurations, these profiles
are directly representative of the raw data.

3 Experimental Details

3.1 Experimental Configuration

The experiments were performed in a recirculating wind tunnel at the Laboratoire de Méca-
nique des Fluides et d’Acoustique at the Ecole Centrale de Lyon. The test section of the wind
tunnel is 8 m long, 1 m high and 0.7 m wide. To generate a boundary layer with character-
istics similar to those of an atmospheric boundary layer, we used a combination of spires at
the entrance to the test section and roughness blocks on the floor of the tunnel, as originally
proposed by Irwin (1981). In these experiments three spires with a height of 0.5 m were used.
We have simulated an idealized street geometry consisting of a sequence of two-dimensional
(2D) parallel canyons, formed by a set of square section bars (60 mm × 60 mm) placed nor-
mal to the flow, as shown in Fig. 1. The bars spanned the entire width of the test section, so
that the ratio L/H of length L to height H was approximately 12. The experiments were
performed for a constant external velocity U∞ ≈ 6.75 m s−1. The velocity profiles in the
external flow were measured downstream of the entry to the test section at a distance equal to
about 12 times the height of the vortex generators. This distance provided a sufficient fetch
to guarantee that the boundary-layer flow could reach an equilibrium condition (Salizzoni
et al. 2008).

The influence of the upstream conditions was studied by keeping the canyon aspect ratio
constant (H/W = 1) and varying the geometry (H/D) of the upstream canyons. This can
be also seen as a sudden roughness change at the position of the measurement section in the
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instrumented canyon. This arrangement allowed us to produce different incoming velocity
profiles driving the flow within a cavity with fixed geometry. Details of the four configurations
studied are given in Table 1.

3.2 Experimental Techniques

We employed two different techniques to measure velocities—hot-wire anemometry (HWA)
in the external boundary-layer flow and particle image velocimetry (PIV) within the cavity.
In the external flow (H < z < δ), velocities were measured by HWA, using an X-probe
functioning as a constant temperature anemometer, with a sampling frequency of 5000 Hz.
Details of the statistical properties of the velocity field are provided in Salizzoni et al. (2008).
Velocities within the cavity and in the lowest part of the boundary-layer flow were measured
using PIV. Two coupled YAG laser sources provided pairs of laser pulses at a syncronized
frequency of about 8 Hz. The visualization light sheet measured 1 mm in width and the flow
was seeded with micron-sized droplets produced by a smoke generator.

The observation field measured approximately 120 × 120 mm2, and this was filmed at a
resolution of 1,280 × 1,024 pixels. The interrogation window was fixed at 16 × 16 pixels,
corresponding to an averaging area of about 1.1 mm × 0.9 mm. The interrogation windows
overlapped by 50 % so that, in total, each pair of images yielded a set of 240 × 240 velocity
vectors. In each configuration the velocity field was sampled 1,000 times at a frequency of 4
Hz and these velocity fields were used to compute ensemble-averaged statistics.

By patching together the results from the different overlapping interrogation windows we
obtained velocity measurements in the domain −3/2 < x/H < 3/2, 0 < z/H < 5/2. The
PIV measurements overlap with the hot-wire anemometer data in the region H < z < 2H .
Vertical profiles of mean velocity and turbulent quantities, measured at the centre of the cavity
and obtained using both HWA and PIV are shown superposed in Fig. 2. For all three quantities
(U/U∞, 1

2 q2/U 2∞,−u′w′/U 2∞) the two datasets are in reasonable agreement in the overlap
region; the agreement is closest for the mean velocity (Fig. 2a) and for the t.k.e. (Fig. 2b) and
least satisfactory for the Reynolds stress (Fig. 2c). For this variable the PIV profiles show
more scatter and provide higher values, and in agreement with previous experimental results
(Stanislas et al. 1998).

The analysis of the flow in the shear layer requires an estimate of the gradient of aver-
aged velocities. The error in the evaluation of the spatial derivatives clearly depends on the
experimental error, given by a systematic error (bias) and a random error (root-mean square,
r.m.s.). For a single point in the interrogation window, we may assume that if the flow is
locally homogeneous, then so will be the bias. Conversely, the random error is likely to vary
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Fig. 2 Comparison between PIV data (0 < z < 2H ) and HWA data (H < z < 3H ) for configuration A
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from one measurement point to the next, and this can have a significant effect on the estima-
tion of the velocity gradients. To reduce this source of error we applied a low-pass filter to
the velocity data (Fouras and Soria 1998; Castelain 2006), by interpolating the velocity field
using a second-order polynomial function of x and y:

u(x, y) = a1x2 y2 + a2x2 y + a3xy2 + a4xy + a5x2 + a6 y2 + a7x + a8 y + a9, (4)

v(x, y) = b1x2 y2 + b2x2 y + b3xy2 + b4xy + b5x2 + b6 y2 + b7x + b8 y + b9. (5)

The 18 coefficients were evaluated for each point in the domain, using a least square mini-
mization procedure over the surrounding 24 points.

4 Experimental Results

4.1 External Flow

The influence of the external flow was studied by varying the aspect ratio H/D of the cav-
ities upstream of the test cavity (Fig. 1), for which the height (H ) to width (W ) ratio was
kept constant (H/W = 1). Overall, four different upstream configurations have been ana-
lyzed: configurations A and B correspond to skimming flow, and configurations C and D to
wake interference flow.1 The incident wind profile depends on the aspect ratio of the upwind
canyons; as the aspect ratio decreases, from configuration A to configuration D, the mean
velocities decrease (Fig. 3a) whereas the Reynolds stresses and the t.k.e. increase (Fig. 3b, c).

As discussed in Salizzoni et al. (2008), the velocity profiles above the upstream obstacles
for the four different configurations are similar, since they can be collapsed in a large part of
the domain if the scaling parameters are chosen appropriately. These are the friction velocity
u∗, the boundary-layer height δ, the roughness length z0 and the displacement height d . Of
these length scales, the first represents an imposed external length scale, whilst the other two
depend on the surface roughness (characterized in these experiments by the ratio H/D) and
can be obtained by fitting a logarithmic profile to the measurements in the inertial region:

u(z)

u∗
= 1

κ
ln

(z − d)

z0
. (6)

The values of these parameters for all four configurations are given in Table 1, together with
the values for the lower limit of the inertial region z∗, which we refer to here as the ‘blending
height’, below which the flow dynamics are directly influenced by the wake of each obsta-
cle and so cannot be considered homogeneous. Details of the method used to estimate the
parameters in Table 1 (with the associated errors) are given in Salizzoni et al. (2008).

The different velocity profiles cannot, however, be considered rigorously similar (Salizzoni
et al. 2009b, 2010) over their full extent, since the depth of the roughness sub-layer, and
therefore the ratio z∗/H , varies from one configuration to the other. This layer is thin-
nest (z∗/H ≈ 1.2) for skimming flow configurations and increases as the obstacle spacing
increases (values of z∗ are provided in Table 1); however, once the flow regime changes
from skimming to wake interference, the blending height increases significantly. An indirect
confirmation of the link between the depth of the roughness sub-layer and the size of the
largest vortices (i.e. the local integral length scale) in the lowest part of the boundary-layer

1 The upstream conditions for configurations A and C are identical to those for configurations 1a and 3a
respectively, as described in Salizzoni et al. (2008).
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Fig. 3 External flow conditions. Velocity profiles measured with HWA at the centre of the cavity, i.e. at x = 0
(see Fig. 1)

flow was provided by numerical simulations of the dispersion of a passive scalar (Salizzoni
et al. 2009b).

To provide more information on the spatial structure of the turbulence we have computed
the two-point velocity correlations throughout the domain. We focus here on the structure
function of the vertical velocity component Rww, which is defined as:

Rww(x0, r) = w′(x0)w′(x0 + r)
[σw(x0)σw(x0 + r)]

(7)

where x0 is any point in the domain, r is a displacement relative to x0 and the averaging is
performed over time. The integral of the structure function over r gives a length scale—the
integral length scale—representative of the distance over which the velocities are correlated.
We focus here on the integral length scale Lww, related to the vertical velocity, since we
are mainly interested in momentum transfer in the vertical direction. The structure functions
Rww computed for configuration A and configuration C at the position x/H = 0, z/H = 4/3
(Fig. 4), provide further evidence of the change in length scale. The plot shows that the inte-
gral length scales Lww for the vertical velocity component are greater for configuration C
than for configuration A.

To quantify these differences we consider the variations in Rww as a function of distance
(z) from the base of the cavity along a vertical line passing through the centre of the cavity.
To calculate Lww at each position we assume that the velocity structure function can be
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Fig. 4 Structure functions of the vertical velocity Rww computed at z = (4/3)H in the external flow in a
skimming flow (configuration A) and b wake interference regime (configuration C)

modelled as an exponential function that depends on Lww:

f (r) = exp{−r/Lww} (8)

and the value of Lww can be inferred from the measured structure function Rww(x0, z) by fit-
ting this exponential curve to the data. The integral length scale computed in this way depends
on both horizontal and vertical positions; to remove the dependence on the horizontal position
we have computed the streamwise averaged value of Lww:

〈Lww(z)〉 = 1

2H

H∫
−H

Lww(x, z) dx . (9)

The vertical profiles of 〈Lww(z)〉 for configurations A and B are plotted in Fig. 5a and for
configurations A, C and D in Fig. 5b. The figures also provide an estimate of the uncertainty
in the computed values of 〈Lww(z)〉 due to both streamwise variations in Lww(z) and to
experimental error in the individual measurements.

In configurations A and B, in the skimming flow regime, 〈Lww〉 is essentially indepen-
dent of the cavity geometry—the profiles are nearly identical, and the variations between the
two are within the estimated uncertainty for the profiles (Fig. 5a). This clearly shows that,
in skimming flow, the size of the turbulent eddies that develop close to the wall is limited
by the horizontal spacing between the obstacles. Therefore when these are packed together
sufficiently closely the obstacle height is not a characteristic length scale of the overlying
boundary-layer flow. This result confirms previous findings from experimental (Perry et al.
1969) and numerical studies (Leonardi et al. 2007).

Conversely, the values of Lww in configurations C and D, in wake interference flow, are
both significantly different from those in configuration A and are characterized by a greater
variability, especially in the lower part of the flow field. This fact shows that when the spacing
significantly exceeds the obstacle height the vortices generated in the wakes of the obsta-
cles have more time to grow and the depth of the roughness sub-layer therefore increases
significantly compared with that observed in the skimming flow regime.
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Fig. 5 Vertical profiles of the spatially-averaged integral length scale 〈Lww〉 of the vertical velocities for
configurations A (H/D = 1), B (H/D = 2/3), C (H/D = 1/2) and D (H/W = 1/3); error bars give a
measure the variability of Lww along the streamwise axis x

4.2 Shear-Layer Flow

Shear at the interface between the cavity and the external generates a Kelvin–Helmholtz type
instability in the layer, which can be clearly observed in Fig. 1. It is worth mentioning that
these instabilities are strictly related to the two-dimensional structure of the flow field and
could not be observed in experiments performed over three-dimensional canopies composed
of a sparse group of obstacles (Huq et al. 2007). This flow is in many ways similar to a
shear layer developing between two parallel flows. However there are also some important
differences:

– The flow in the cavity is not always parallel to the external flow, and the velocity in the
cavity varies with horizontal distance from the upwind corner.

– The mean velocities in the external flow vary rapidly with vertical distance from the shear
layer.

– The turbulence intensity of the external flow i(z) =
√

1
2 q(z)2/U (z) is of the same order

as the turbulence levels in the shear layer, and is typically in the range 0.08 < i(z) < 0.16.

As a result of these differences, the shear layer cannot be analyzed in the same way as for
the canonical case. In particular, we cannot define the boundaries of the shear layer in terms
of the mean velocities relative to the velocities outside the layer. Typically, in a mixing layer
formed between two parallel uniform streams the outer edges may be defined as the points
for which U = U ± α�U , where U = (U1 + U2)/2,�U = U1 − U2 and α is a constant
taking values between 0.45 and 0.48. But in the mixing layer above a cavity the external flow
is not uniform and the boundary-layer height is much greater than the depth of the cavity
(δ ≈ 10H ) so the velocity in the upper layer, just outside the shear layer, is very different
from U∞ and will depend on the local thickness of the shear layer; the velocity in the cavity
varies with the horizontal distance from the upwind corner. To circumvent this problem we
have defined the boundaries of the mixing layer in terms of the production of t.k.e. P , which
we calculated as

P = u′u′ ∂u

∂x
+ u′w′ ∂u

∂z
+ w′u′ ∂w

∂x
+ w′w′ ∂w

∂z
. (10)
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Fig. 6 a Normalized t.k.e. production P H/U3∞ for configuration D. b Shear-layer boundaries for the different
configurations

As can be seen in Fig. 6a, the mixing layer is characterized by a very high level of t.k.e.
production, which falls off very sharply at the outer edges of the layer. The boundaries can
then be defined using a threshold value of the spatial derivative ∂ P/∂z. Figure 6b shows the
shear-layer boundaries, computed for all configurations studied. It is worth noting that we
could not detect significant variations in the shear-layer boundaries, from one configuration
to another, except for the upper limit in configuration D. However those differences might
be due to an artefact of the experiment, since the higher level of turbulence in the external
flow blurs the boundary between the core of the shear layer and the external flow. Once the
edges of the layer have been determined in this way, the velocity difference across the layer
is defined from the velocities on the upper and the lower edges, at the centre of the cavity,
i.e. �U = U1(x = 0) − U2(x = 0). The corresponding values for the four configurations
are given in Table 1.2

We have used the definitions of the boundaries of the shear layer and the velocity differ-
ence �U to scale the velocity profiles at the top of the cavity. Figure 7 shows the vertical
profiles of mean horizontal velocity u, Reynolds stress and t.k.e. normalized by �U . The
mean velocity profiles collapse onto a single curve, suggesting that this flow variable attains
self-similarity. However, neither the Reynolds stress nor the t.k.e profile collapses onto a sin-
gle curve. This means that �U cannot be the only relevant velocity scale in the shear layer
and that the dynamics of the flow in that region are not entirely determined by the local t.k.e.
production, as would be the case for a plane mixing layer. This suggests that the turbulent
fluxes of t.k.e. have an important influence on the shear-layer dynamics. Indirect confirma-
tion of the influence of t.k.e. fluxes arising from the external boundary-layer flow is given by
the analysis of the velocity profiles normalized by u∗, the friction velocity of the overlying
boundary-layer flow. These are shown in Fig. 8. This scaling clearly reduces the differences
between the Reynolds stress profiles compared with the other scaling variables: we interpret
this reduced variabilities as indicating the influence of the external flow conditions on the
turbulent transfer within the shear layer.

2 The values of �U differ from those presented in Salizzoni et al. (2009a) since the threshold for ∂ P/∂z has
been redefined. This difference however does not affect in any way the conclusions of this analysis.
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Fig. 7 Velocity, Reynolds stress and t.k.e. profiles in the shear layer at different streamwise locations x/H
normalized with �U , the mean velocity difference at the top of the cavity

The profiles of t.k.e. normalized by u∗ (Fig. 8) show that the t.k.e. outside the mixing layer
(both in the cavity and in the overlying boundary layer) scales on u∗ rather than on �U , for
all four configurations. Within the mixing layer, however, the situation is more complex.

The t.k.e. profiles all show a systematic decrease across the mixing layer, from a high value
outside the cavity to a low value within the cavity, and the region over which the t.k.e. varies
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corresponds well with the boundaries of the mixing layer as determined from the production
of t.k.e. The profiles therefore illustrate the diffusion of t.k.e. from the outer flow to the flow
within the cavity. However the exact form of the t.k.e. profiles within the mixing layer varies

123



406 P. Salizzoni et al.

from one configuration to another, as can be seen in Figs. 7 and 8, and the profiles within
the mixing layer do not really scale on either �U or u∗. The profiles for configurations A
and B show a peak in the t.k.e. within the mixing layer, at all values of x/H indicating that
additional t.k.e. is being generated by shear within the mixing layer. This peak occurs on
the fast side of the mixing layer, as in conventional laboratory mixing layers. These two
configurations have the lowest values of u∗ and the highest values of �U , so it is plausible
to conclude that the t.k.e. within the mixing layer is dominated by production from the shear
across the mixing layer. This could explain why the two profiles do not scale on u∗ within
the mixing layer, but it is then surprising that they do not scale on �U either, since this scale
ought to characterize the shear in the mixing layer. The profiles for configurations C and D
are different from those for A and B, because they do not show any evidence of a peak in the
t.k.e. within the mixing layer (this can be seen most clearly in Fig. 7). Configurations B and
C both show a local decrease in the t.k.e. (at z/H ≈ 1.15) but for all the profiles apart from
that at x/H = 2/3 this point is well outside the mixing layer and so cannot be considered to
indicate a local peak in the t.k.e. within the mixing layer (but we currently have no explana-
tion for this local decrease in t.k.e.). Within the mixing layer, the profiles for configurations C
and D do not collapse exactly when scaled on u∗ but they do become very similar, especially
when compared with the scaling on �U (Fig. 7), both inside and outside the mixing layer.
Since these two configurations are those with the highest values of u∗ and the lowest values
of �U , it seems reasonable to conclude that, for these configurations, the diffusion of t.k.e.
across the mixing layer dominates the production of t.k.e. within the layer. This would mean
that there is some critical value of the ratio �U/u∗ (between 2.48 and 3.27) that determines
the relative importance of the production and diffusion processes for the t.k.e. profile within
the mixing layer. It still remains to explain why the production-dominated profiles do not
scale on �U .

Based on this analysis, we conclude that the mechanisms governing the flow dynamics
are not similar to those observed in a planar mixing layer and that the flow in this region is
directly influenced by the dynamics of the overlying boundary-layer flow.

4.3 Cavity Flow

Finally, we examine the flow within the cavity, beginning with possible scalings for the mean
velocity, the Reynolds stress and the t.k.e. Horizontal and vertical profiles of mean velocity,
measured at the centre of the cavity (i.e. along z/H = 1/2 and x/H = 0) are plotted in Fig. 9
normalized by U∞ (Fig. 9a), �U (Fig. 9b) and u∗ (Fig. 9c). As mentioned in Sect. 2 U∞ is
identical for all four configurations, therefore the profiles in Fig. 9a are directly representative
of the raw data. The corresponding profiles of Reynolds stress are shown in Fig. 10a–c, and
the profiles of t.k.e. are plotted in Fig. 11a–f (in this case horizontal and vertical profiles
have been plotted separately, for clarity). Figure 9a shows surprisingly that the mean velocity
within the canyon hardly varies in the four configurations studied. Given this condition it is
evident that neither the velocity difference across the shear layer �U nor the friction velocity
of the outer flow u∗ is an appropriate scale for the mean velocities within the canyon (Fig. 9b,
c). This is also true for the Reynolds stress (Fig. 10a–c), although the differences between
the possible scalings are less evident than for the mean velocities since the values are close
to zero in most of the canyon. On the other hand, the t.k.e. (Fig. 11a–f) appears to scale best
on the friction velocity of the outer flow. This apparent scaling of the mean velocities on U∞
is surprising, given that the conditions in the boundary layer vary significantly in the four
configurations, so that U∞ is not particularly representative of the velocities at the bottom of
the boundary layer.
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Fig. 9 Mean velocity profiles within the cavity normalized with a U∞, b �U and c u∗. Vertical profiles of
horizontal mean velocity u are at x = 0 and horizontal profiles of vertical mean velocity w are at z = H/2

Figure 9 show that the maximum downward mean vertical velocity on the centreline
(z/H = 1/2) is almost the same as the peak horizontal velocity at the top of the cavity, at
x/H = 0 (u/U∞ ≈ w/U∞ ≈ 0.25), but the peak in the vertical velocity is displaced away
from the cavity wall by the growth of the boundary layer. At the centre of the cavity the
velocity profiles are close to linear with a constant gradient whereas the slope of the velocity
profile decreases as the wall is approached. This effect is then cancelled out at the upper
interface of the cavity by the acceleration provided by the outer flow, across the shear layer.
The profiles of Reynolds stress (Fig. 10a–c) show much less variability between the four
configurations, irrespective of scaling, and this is principally because the values are close
to zero almost everywhere except in the shear layer and close to the cavity walls. In these
regions, the Reynolds stress also appears to scale most satisfactorily on the far field velocity
U∞. The shear in the interface layer at the top of the cavity induces very high Reynolds
stresses, which decay as the fluid is transported around the cavity; at the mid-point on the
downwind wall of the cavity the level has decreased to about 1/4 of the level in the shear
layer.

The vertical and horizontal profiles of t.k.e. show that the t.k.e. for the four configura-
tions scales on the friction velocity u∗, rather than on �U (Fig. 11a–f). This suggests that
the dynamics of the t.k.e. are dominated by the turbulence entrained from the external flow,
which is then transported through the cavity by the mean flow. The maximum t.k.e. levels
at the centre of the interface are of the same order as those at the centre of the downwind
face ((1/2)q2/u2∗ ≈ 1.6) but the t.k.e. then decays very rapidly as it is transported round the
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Fig. 10 Reynolds-stress profiles within the cavity normalized with a U∞, b �U and c u∗.Vertical profiles
are at x = 0 and horizontal profiles are at z = H/2

cavity; at the centre of the cavity floor it has fallen to about half of its maximum value at the
top of the cavity.

The reduced scatter in the t.k.e. profiles normalized by the friction velocity u∗ has impor-
tant implications for parametric models of the turbulent transfer between the canyon and the
external flow. Experimental results of pollutant exchange velocities from the cavity, referred
to as ud, measured in the same configurations discussed here (Salizzoni et al. 2009b) showed
that the wash-out process is mainly governed by the intensity of the fluctuating velocities
within the cavity, and hence on the t.k.e. levels. Since these scale on u∗ we expect that the
transfer velocities ud scale on u∗ too. This is confirmed by the results presented in Table 2
where we show that non-dimensional transfer velocities ud/u∗ tend to an almost constant
value.

Concerning the nature of flow dynamics within the cavity it is interesting to note, as shown
in Figs. 10 and 11, that the t.k.e. field within the cavity is decoupled from the Reynolds-stress
distribution, i.e. higher values of t.k.e. do not correspond to higher values of Reynolds stress.
This implies that the ‘effectiveness’ of the turbulent transfer of momentum is not related to
the intensity of the velocity fluctuations. This further implies that the flows within the canyon
that occur in the four different configurations are not dynamically similar, even if they are
taking place in a geometrically similar domain. It is possible that the t.k.e. levels within the
cavity are due to the action of ‘inactive’ swirling structures, i.e. eddies that do not contribute
to momentum transfer.
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Fig. 11 Vertical and horizontal profiles of t.k.e. profiles within the cavity normalized with U∞ (a and b),
�U (c and d) and u∗ (e and f). Same symbols as in Fig. 10

Table 2 Mass transfer velocities
ud from the canyon to the
external flow

Experimental results from
Salizzoni et al. (2009b)

Configuration H/D u∗ (m s−1) ud (m s−1) ud/u∗

A 1 0.33 0.066 0.200

B 2/3 0.36 0.073 0.202

C 1/2 0.41 0.076 0.185

D 1/3 0.46 0.78 0.171
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The fact that the t.k.e. fluxes scale on u∗ and the Reynolds stresses are close to zero almost
everywhere in the cavity shows that the turbulent fluctuations are associated with unsteady
structures that do not make any net contribution to momentum transfer. There are two pos-
sible explanations for this, depending on whether the turbulent fluctuations are generated by
small-scale structures or large-scale structures. If the turbulent fluctuations are generated by
small-scale structures in the flow, then these structures have to exhibit some form of symmetry
in their geometrical structure; something similar to this is observed in homogeneous isotropic
turbulence, where the symmetry of the vortical structures creates turbulence in which the net
Reynolds stress is equal to zero. In the cavity flow studied here, these small-scale structures
would have to be entrained into the cavity from the external flow by the flapping of the
shear layer, but the turbulence in the boundary layer above the mixing layer is far from being
homogeneous and isotropic (Sect. 4.1), so it is also necessary to explain how the small-scale
structures that are entrained become isotropic. There are two possible mechanisms:

– Whilst being transported across the mixing layer the small-scale structures are stretched
and deformed by the shear so that they lose their initial topological characteristics, becom-
ing isotropic.

– Only the smaller scale structures are entrained by the mixing layer, and these lie within
the inertial range of the external flow, so they are already close to being symmetrical.

If, on the other hand, the turbulent fluctuations in the cavity are generated by large-scale
structures then it is possible that these are caused by fluctuations involving the whole body
of fluid in the cavity, in a coherent rotating motion. A similar phenomenon was identified by
Townsend (1976) in turbulent boundary layers, where flows with similar values of u∗ could
exhibit different profiles of turbulent intensity i = σu/U . He suggested that “…large-scale
swirling in planes parallel to the wall [that] do not extract energy from the mean flow or
affect the rate of energy transfer to smaller eddies for viscous dissipation. Swirling motions
contribute little to Reynolds stress, and their effect on that part of the layer between the point
of observation and the wall is one of slow random variations of ‘mean velocity’ which cause
corresponding variations of wall stress. It is possible and useful to regard the ‘swirl’ com-
ponent of local motion as an inactive component which may be ignored in any discussion
of the local flow …” (Townsend 1976, pp. 153–154). Similarly, in the flow studied here, it
is possible that the t.k.e. depends at least partially on fluctuations involving the whole body
of fluid within the cavity in a coherent rotating motion. In order to test these hypotheses we
have analyzed the flow structure within the canyon.

4.3.1 Flow Structure

In the previous paragraph we showed the influence of the intensity of the external turbulence
on the turbulent motion within the cavity. Similarly, we may expect the flow structure within
the cavity to be influenced by the structure of the external turbulence.

To study this dependence we computed the auto-correlation coefficients Ruu and Rww over
the entire domain and we have evaluated the functions Luu(x, z) and Lww(x, z) (Sect. 4.1)
within the cavity. These are shown in Fig. 12. For two of the profiles (Fig. 12b, c), higher val-
ues of Lww are detected close to the vertical walls whereas Luu increases close to the bottom
of the cavity. To explain the behaviour of Luu and Lww we turn to the spatial distribution of
the r.m.s. (σu, σw) of the horizontal and vertical velocities within the cavity. These are shown
in Fig. 13.

The graph of σu/U∞ (Fig. 13a) shows clearly how turbulent fluid is entrained into the
cavity at the upper downwind corner, and as the fluid is transported round the cavity the
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Fig. 13 Normalized r.m.s. values of a horizontal σu/U∞ and b vertical velocity fluctuation σw/U∞ within
the cavity

horizontal fluctuations first decay and then grow again as the fluid moves parallel to the
bottom of the cavity, reaching a maximum at the lower upwind corner of the cavity. This
decrease and subsequent increase in the horizontal velocity fluctuations indicates that the
turbulence is not only caused by the entrainment of turbulent structures from outside the cav-
ity, but must also be the result of turbulence generation within the cavity, and modification
of that turbulence by interaction with the walls of the cavity. In the first part of the flow,
parallel to the downwind vertical cavity wall, the horizontal fluctuations are damped by the
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presence of the vertical wall and part of the energy is transmitted to fluctuations in the plane
parallel to the wall (σv and σw) by the blocking effect of the wall (as discussed, for example,
in Bearman 1972 and Hunt et al. 1990). As the flow advances along the bottom of the cavity
the velocity fluctuations perpendicular to the wall are damped out rather rapidly (Fig. 13b)
whilst the horizontal fluctuations increase, due both to the blocking effect of the floor on the
vertical fluctuations and to shear generated by the rigid boundary. The blocking effect of the
upwind wall in the cavity amplifies the turbulent fluctuations in the approaching flow, and as
a result there is a local maximum in the horizontal fluctuations close to the lower downwind
corner of the cavity. So, the differences in the general behaviour of the functions Luu and
Lww can be interpreted as the effect of a plane rigid boundary on the structure of the flow,
increasing the correlations between the velocity components in the directions parallel to the
wall.

In these regions we observe also that the values of Luu and Lww for configurations C and
D are generally higher than those for configurations A and B. This shows that, in general,
increased velocity correlations in the external flow are associated with higher velocity corre-
lations within the cavity for both the horizontal and the vertical components of the velocity
field. This result tends to support the hypothesis that the increased levels of t.k.e. within the
cavity are essentially related to larger scale velocity fluctuations.

5 Conclusions

The influence of external flow conditions on the transfer of momentum between an idealized
street canyon and the overlying boundary layer has been investigated experimentally using
PIV and HWA to measure the velocity fields inside and above the canyon. The results show
that momentum transfer is due essentially to a coupling between the turbulent structures in
the outer flow and the structures in the shear-layer interface between the two regions. The
main features of this interaction are:

1. The dynamics of the shear layer flow at the top of the canyon are significantly influenced
by turbulent t.k.e. fluxes from the external flow.

2. The flow within the cavity depends on turbulent t.k.e. fluxes from the external flow.
3. The structure of the flow within the cavity is sensitive to changes in the structure of the

external flow.
4. The turbulent velocity fluctuations within the cavity are mainly due to larger scale fluc-

tuations.
5. The transfer process cannot be rigorously expressed in a non-dimensional form based

on a single velocity scale.

The results from the experiments reported herein show that the interaction between the
shear layer and the overlying flow is complex, involving several different physical mecha-
nisms, and that as a result there is no single velocity scale that characterizes all aspects of the
flow. Some processes scale on the friction velocity of the overlying flow, whilst others scale
on the velocity difference between the external flow and the flow in the cavity. And although
the flow in the cavity is driven by the external flow, the velocity difference across the interface
does not scale on the friction velocity. This means that the first two scaling hypotheses devel-
oped at the outset (Eqs. 1 and 2) are not confirmed, but the data are consistent with the third
hypothesis (Eq. 3c). More work is still required on the exact relationship between the outer
flow and the velocity difference across the interface, since this clearly depends on a number
of independent physical parameters that characterize the cavity and the boundary conditions
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upstream of the cavity. This has important implications for the definition of parametric rela-
tionships for the turbulent exchange of material in the urban canopy, since these relationships
will need to take into account both local conditions and conditions upwind of the street can-
yons—in other words, any simple model for an inhomogeneous urban surface will have to
take into account wind direction, since this will determine the properties of the incident wind.
The results presented here concern essentially two-dimensional configurations, whereas, in
reality, all streets are of finite length, and are not necessarily oriented perpendicular to the
wind. The general problem of flow and dispersion in a finite length street canyon for arbitrary
wind direction was studied by Soulhac et al. (2008). They showed that, in the central section
of the street, certain aspects of the flow could be derived from a suitable linear superposition
of the flow perpendicular to the street and the flow along the street, and that where there was
coupling between the two components, the transverse component modified the longitudinal
component, but was itself essentially unmodified. A companion study of flow and dispersion
in street intersections (Soulhac et al. 2009) showed that the influence of a street intersection
extends into the adjoining streets to a distance approximately equal to the characteristic scale
of the streets, so it is likely that the results presented herein will remain applicable in urban
environments characterized by relatively long streets in grid patterns (as studied, for example,
by Garbero et al. 2010). However the flow structure in a sparse obstacle array is likely to be
very different; Huq et al. (2007) for example, did not detect any clear sign of Kelvin–Helm-
holtz type shear-layer instabilities in their experimental study of flow in an urban canopy
characterized by large 3D obstacles. In such a configuration the recirculation patterns are
considerably more complicated, and strongly three-dimensional, so we would not expect the
scalings developed here to be applicable to urban canopies with those characteristics.
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