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Abstract

This experimental study analyses the dynamics of concentration fluctuations
in a passive plume emitted by a point source within the turbulent boundary
layer. We aim to extend the popular study of Fackrell and Robins (1982) about
concentration fluctuations and fluxes from point sources by including third and
fourth moments of concentration. We also further inquire into the influence
of source conditions, such as the source size, source elevation and emission
velocity, on higher order concentration moments. The data set is completed by
a detailed description of the velocity statistics within the TBL, with exhaustive
information on both the temporal and spatial structure of the flow.

The experimental data-set has been used to test two different modeling ap-
proaches: an analytical meandering plume model (in one and in three dimen-
sions) and a Lagrangian stochastic micro-mixing model.

Keywords: concentration fluctuations, concentration PDF, turbulent
boundary layer, atmospheric dispersion, plume meandering model, Lagrangian
stochastic model, micromixing
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Résumé

Cette étude, menée principalement par des moyens expérimentaux, analyse la
dynamique des fluctuations de concentration produites au sein d’un panache
d’un scalaire passif émis par une source ponctuelle dans une couche limite tur-
bulente. En étendant le travail de Fackrell and Robins (1982) sur les fluctuations
de concentration, on décrit l’évolution des quatre premiers moments de la con-
centration et on étudie l’influence des conditions à la source (telles que la taille
et la hauteur de la source et la vitesse de sortie) sur les moments mêmes. L’étude
est complétée par une description détaillée des statistiques du champ de vitesse
dans la couche limite, comprenant des informations sur la structure spatiale et
temporelle de la turbulence.

Cette base de données expérimentale a été utilisée pour valider deux
différentes approches à la modélisation de la dispersion: un modèle analytique
de meandering et un modèle Lagrangien stochastique avec un schéma de micro
mélange.

Mots clès: fluctuations de concentration, fonction densité de probabilité,
couche limite atmosphérique, dispersion atmosphérique, modèle analytique de
meandering, modèle Lagrangian stochastique, micro mélange
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Chapter 1

INTRODUCTION

Considerable attention has been focused, in recent years, on the prediction of the
Probability Density Functions (PDFs) of passive scalar concentration downwind
a source of pollutant in the turbulent boundary layer. This is due to an increased
interest in environmental problems, a more strict regulation about emissions in
the atmosphere, the risk assessment of hazardous releases of toxic or flammable
substances, and on problems related to odours.

When dealing with such issues, the knowledge of the concentration mean
and standard deviation is not sufficient to predict peak concentrations, which
requires information about higher order moments of the concentration PDF.

To these purposes several modelling approaches have been developed.
Between them, the most simples are analytical meandering models, whose

conceptual framework was formulated by Gifford (1959), and that have been
revised and generalised by many other authors (e.g. Sawford and Stapountzis
(1986), Yee et al. (1994), Yee and Wilson (2000)).

In the family of Lagrangian stochastic models, two schemes were developed
to model scalar fluctuations in plumes: two-particles models and micro-mixing
models. A first model for the two-particles separation was proposed by Durbin
(1980, 1982) whereas a more recent formulation was provided by Franzese and
Borgas (2002). The rigorous applications of these models to calculate the full
probability density function in a realistic atmosphere (not homogeneous) are still
some way off (Sawford, 2004). This requires therefore the adoption of micro-
mixing models, that are multi-particle models simulating the mass exchanges by
molecular diffusion taking place between particles (Pope (1998), Sawford (2004),
Cassiani et al. (2005a), Cassiani et al. (2007), Postma et al. (2011a)).

The Lagrangian stochastic models have been also used in coupling with me-
andering models for inhomogeneous anisotropic turbulence (Luhar et al. (2000),
Franzese (2003)) or with hybrid Puff-particle models (De Haan and Rotach,
1998). In this case they are used to calculate the PDF due to the meandering
motion of the plume mass centre, and a parametrisation is used for the plume
relative dispersion.

The reliability of these models has however to be tested against field or ex-
perimental data providing a detailed description of concentration and velocity
statistics. The motivation of our work is to provide a complete data-set de-
scribing the evolution of a fluctuating pollutant plume within the Turbulent
Boundary Layer (TBL). We aim to extend the popular study of Fackrell and
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10 CHAPTER 1. INTRODUCTION

Robins (1982a), about concentration fluctuations and fluxes from point sources
by including measurements of concentration skewness and kurtosis. We also fur-
ther inquire into the influence of source conditions, such as the source size, on
higher order concentration moments. The data set is completed by a detailed de-
scription of the velocity statistics within the TBL, with exhaustive information
on both the temporal and spatial structure of the flow.

The experimental data-set has been used to test two different modeling ap-
proaches: an analytical meandering plume model (in two and in three dimen-
sions) and a Lagrangian stochastic micro-mixing model.

The thesis is divided in two parts: Measurements and Modelling. In the first
part (Measurements) are reported experimental results for what concerns the
investigation of the velocity and concentration fields, respectively in Chapter 2
and Chapter 3. In the second part (Modelling), the meandering plume model
and a Lagrangian stochastic micro-mixing model are presented and compared
with exprimental results, respectively in Chapters 4 and 5.



Part I

MEASUREMENTS
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Chapter 2

THE VELOCITY FIELD

2.1 ABSTRACT

Understanding the effects of roughness on the turbulent boundary layer is of
practical importance in the prediction of pollutant dispersion. The main pur-
pose of this study is to describe accurately the turbulent boundary layer de-
veloped on a rough wall and to measure several quantities that are needed to
parametrise turbulence in dispersion models. With this aim we have carried out
detailed hot-wire anemometry and particle image velocimetry measurements
within a turbulent boundary layer developing over a rough-wall. The velocity
field description includes one-point velocity statistics, two-points spatial corre-
lations, integral length scales, spectra, probability density functions, turbulent
kinetic energy budget, Lagrangian time scales and turbulent diffusivities. Analo-
gies and differences with previous experiments carried out by other authors are
analysed and shortcomings of the similarity theory discussed.

2.2 INTRO

The study of Turbulent Boundary Layers (TBLs) has benefits for understanding
the dynamics of atmospheric flows and their role in the dispersion of pollutants.
Several experimental measurements in wind tunnel and on the terrain were re-
alised to describe the structure of the turbulent boundary layer over a rough-wall
and to identify the mechanisms responsible for substance dispersion. Universal
aspects of flows over rough walls were discussed by Raupach et al. (1991) in his
review of the theoretical and experimental knowledge of rough-wall TBLs.

Much of the recent literature concerns the effects of different types of rough-
ness on the TBLs, since it has been suggested that the details of the wall may
influence the flow across the whole boundary layer. The structure of TBLs
which develop over rough and smooth walls was examined by Antonia et al.
(1990) and Krogstad and Antonia (1994, 1999), who investigated the effects of
the roughness on the velocity statistics, integral length scales and momentum
absorption (Raupach et al., 2006). A review about differences between different
types of roughness was written by Jimènez (2004). Salizzoni et al. (2008) studied
the interaction between small- and large-scale roughness elements in different
flow regimes. Measurements with new techniques as particle image velocimetry

13



14 CHAPTER 2. THE VELOCITY FIELD

and planar laser induced fluorescence were carried out over a two-dimensional
rough-wall by Djenidi et al. (2008) and by Vesely et al. (2009).

Developed turbulent flows are similar in a generic sense, but the request of
finding universal parameters is perfunctory satisfied. Based on the similarity
theory, the TBL consists, in the simplest view, of an outer and an inner region.
It is generally assumed that if a proper set of scales is chosen, each region can
be described by some form of similarity solution.

In the outer region, where the surface boundary conditions are ignored, the
flow is supposed to be in a state called “moving equilibrium” (Yaglom, 1979)
with the boundary layer height (δ) and the friction velocity (u∗) varying suffi-
ciently slowly stream-wise (x-direction), that their variation can be disregarded.
Then both u∗ and δ can be considered as local scales at any particular x.

In the inner region, the length scale for the flow close to the surface is the
roughness length z0, that depends on the size and orientation of the roughness
elements. u∗ is the only velocity scale, to which all velocity components are
proportional. The bulk properties of the mean velocity distribution u(z) are
derivable by a classical asymptotic matching process. Matching is a technique
by which one requires that the outer and the inner layer similarities are identical
in the double limit process z/z0 → ∞ (looking upwards from the surface layer)
and z/δ → 0 (looking down towards the surface) (Tennekes, 1982). The result
of this matching process is the familiar logarithmic law:

u(z)

u∗

=
1

k
ln

z

z0

, (2.1)

where k is the Von Karman constant (k ≃ 0.4). The overlap region where the
two laws are valid is called inertial sublayer, in reference to the analogy with
the inertial subrange in the turbulent kinetic energy spectrum. In this layer the
wind shear ∂u/∂z is independent of all lengths except the distance from the wall
z. A crucial condition for the existence of the inertial sublayer is the separation
between the outer and the inner length scales, so that z0 << δ.

According to the velocity defect law, the surface geometry is seen as a bound-
ary condition only affecting the velocity distribution in the roughness region, of
the order of a few roughness heights away from the wall. Further out, the flow
characteristics are assumed to be independent of the surface geometry. Hence,
flows at sufficiently high Reynolds number should lead to identical distributions
of the non-dimensional velocity statistics (normalized by u∗) as function of z/δ,
independently on the roughness of the surface, except very close to the wall (e.g.
Hinze (1975), Townsend (1976)).

A wide number of experimental results indicate however that details of the
wall roughness elements influence the flow across the whole boundary layer,
providing experimental evidences of the shortcomings of the similarity theory.
Krogstad and Antonia (1994) observed a relatively efficient transfer of infor-
mation between the wall and the outer region of the turbulent boundary layer,
so that the effects of the surface roughness on the mean velocity and on the
turbulent stresses are not confined in the wall region, but influence the entire
boundary layer. Large scale coherent structures, that are the main sources of
Reynolds shear stress, appear to have higher average inclination and less longi-
tudinal length compared to the smooth-wall case.

Krogstad and Antonia (1999) provided further evidence that the turbulent
mixing properties are affected throughout the boundary layer by the surface ge-
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ometry. They compared data from smooth surface and from two rough surfaces
having the same effective hydrodynamic roughness but quite different geome-
tries and length scales. Although mean velocity profiles were very similar in the
three cases, suggesting that roughness effects are restricted to the wall region,
the turbulent velocities presented important differences. Considerable effects of
the surface conditions in the outer layer are found in the normal stress perpen-
dicular to the wall, σw/u∗, and on the Reynolds stress u′w′/u2

∗
, while σu/u∗

was only slightly affected.

Poggi et al. (2003) experimentally investigated the small scale turbulence and
its degree of anisotropy and intermittency as a function of the wall distance, for
smooth and rough wall conditions. They concluded that the interaction of the
roughness with the organised motion near the wall induces a strong reduction
of the levels of anisotropy and intermittency. Such differences in the turbulence
structure were attributed to the injection of turbulent energy by the roughness
elements in the flow near the wall.

These studies show that the adoption of similarity relations to depict the
statistics of a turbulent boundary layer can induce to significant errors, espe-
cially for what concerns the structure of the larger scale motion. In wind tunnel
experiments reproducing the atmospheric boundary layer another element of
criticism is introduced, due to the vortex generators used to thicken the bound-
ary layer and to accelerate its stream-wise development. Vortex generators fix
the size of large scale structures (Robins, 1979). However, their interaction with
the scales of turbulence is still unclear and we can not exclude that they could
in some way modify the flow structure and in particular the transverse integral
length scales.

When creating a data set dedicated to the validation of dispersion models,
velocity statistics from experimental measurements should be as accurate as
possible, to allow the models to reproduce the features of the velocity field. The
main purpose of this study is to describe accurately the turbulent boundary layer
developed on a rough wall and to discuss analogies and differences with exper-
iments carried out in the past by other authors. Two measurement techniques
were adopted, hot-wire anemometry and particle image velocimetry, to deter-
mine velocity statistics, two-points spatial correlations, integral length scales,
spectra, triple correlations, probability density functions, turbulent kinetic en-
ergy budget. We also estimated the Lagrangian time scale and the turbulent
diffusivity.

In what follows, our measurements are systematically compared to three
data sets: Fackrell and Robins (1982a), hereafter referred to F&R, that rep-
resent the reference data set for the validation of pollutant dispersion models,
Raupach et al. (1991) and Krogstad and Antonia (1994), that provide accurate
description of velocity higher order statistics and of integral length scales. Two
measurement techniques were adopted, hot-wire anemometry and particle im-
age velocimetry, to determine velocity statistics, two-points spatial correlations,
spectra, triple correlations, probability density functions, turbulent kinetic en-
ergy budget. Particular emphasis is put on the estimates of the integral length
scales from two-point correlations of the three velocity components. From these
we could infer information for the parametrisation of Lagrangian time scales
and turbulent diffusivities.
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2.3 EXPERIMENTAL METHODS

The experiments were performed in the atmospheric wind tunnel of the Labo-
ratoire de Mécanique des Fluides et d’Acoustique de l’Ecole Centrale de Lyon,
France. The flow dynamics above the obstacle array were investigated by means
of hot wire anemometry, using an X-wire probe with a sampling frequency of
5000 Hz. Hot wire data provided information about the temporal evolution
of the velocity. They were supported by a series of measurements with Stereo
Particle Image Velocimetry (Stereo-PIV), which allowed a complete knowledge
of the spatial variability of the velocity field.

2.3.1 Wind Tunnel set-up

The wind tunnel measures 24 m long, 7.4 m high and 7.2 m wide (Figure 2.3.1).
The working section measures 14 m long, 2.5 m high and 3.7 m wide.

The aerodynamic circuit is composed by an axial fan driven by a direct
current motor having a power of 50 kW (pression: 200Pa, discharge: 100m3/s).
The flow speed can be set continuously from 0.5 to 10 m/s. Flow straighteners
are present downstream of the fan blades to remove the swirl generated by the
fan. A heat exchanger system allows to adjust the air temperature in the test
section with a precision of ±0.5◦C. A converging system is placed before the
entrance of the test section to force the incident wind flow to be approximately
parallel to the test section centre line, and to increase the flow uniformity in the
transverse direction. A diverging system is placed at the exit of the test section.
Vanes are present in every elbow to bend the flow in each sharp turn. An upwind
grid was placed at the entrance of the test section to generate homogeneous
turbulence.

Figure 2.1: The atmospheric wind tunnel of the Laboratoire de Mécanique des
Fluides et d’Acoustique de l’Ecole Centrale de Lyon, France.

In the wind tunnel, a neutrally stratified boundary layer was generated by
combining the effect of a row of spires at the beginning of the test section
and floor roughness elements (Irwin, 1981). The spires were of the Irwin type
(Irwin, 1981) with a height of 0.5 m. Their role is to thicken the boundary layer
accelerating the stream-wise development of the larger scale eddies. The entire
working section floor was overlaid with cubes of side H=0.02 m distributed in
rows which acted as roughness elements. These elements assured a production
of turbulence near the floor. This experimental set-up allowed us to reproduce
a boundary layer whose depth δ was approximately 0.8 m. The reference free-
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stream velocity U∞ at the boundary layer height was set at 5 m/s. The Reynolds
number Re = δU∞/ν ≈ 2.6 · 105 has a value which is generally assumed as
sufficiently high to ensure the adequate simulation of a fully rough turbulent
flow (Jimènez, 2004).

2.3.2 Hot Wire Anemometry

The velocity field above the obstacles array was investigated with a hot-wire
anemometer equipped with a X-wire probe with a velocity-vector acceptance
angle of ±45◦. Longitudinal and transverse components of the velocity could be
thus measured simultaneously. Several vertical and transverse profiles of velocity
were recorded along the entire working section to completely characterise the
flow in the TBL. For each measurement point 120 s time series were acquired
with a sampling frequency of 5000 Hz.

The hot wire sensors are thin metallic wires made of platinum or tungsten
heated by an electric current (Joule effect). The wires are cooled by the inci-
dent flow, which act by virtue of its mass flux and its temperature, through
various effects, but with forced convection usually predominant (Comte-Bellot,
1976). The heat loss can be obtained by measuring the change in wire temper-
ature under constant current, or the current required to maintain a constant
wire temperature (or resistance). This loss is converted into a flow velocity in
accordance with convective theory.

A constant-temperature anemometer was adopted. In this set-up the hot
wire is included in a Wheatstone bridge, and the unbalance voltage is amplified
and fed back to the bridge to suppress the resistance (and temperature) changes
of the wire. This feedback signal represents the changes occurring in the flow
variables. The advantages of constant-temperature anemometers were recog-
nized at an early stage. A rapid variation in the heating current compensate
for instantaneous changes in the flow velocity (Bruun, 1995), making this type
of anemometers suitable for high turbulence intensity flows.

The X-wire probes and the anemometer used in this research are produced
by Dantec Dynamics. Data acquisition was performed with a LabView routine.
The calibration was carried out by exposing the probe to a set of known veloc-
ities and then recording the voltages. The points are fitted with a curve that
represents the transfer function used to convert data records from voltages into
velocities. The yaw coefficients are used in order to decompose the calibration
velocities from the X-probe into the U and V components (Jorgensen, 2002).
Calibration was carried out in the wind tunnel and a pitot-tube was used as
velocity reference.

Errors are well known to affect turbulence measurements with hot-wire
probes close to the surface due to the enhanced turbulence intensity (Castro
and Dianat, 1990). These errors are responsible for the misbehavior in measur-
ing Reynolds shear stress just above the roughness; the most obvious symptom
is the decrease in the measured shear stress uw for vertical distances of the
order of the obstacles height (Raupach et al., 1991). Error analysis on X-wire
probes were made by Legg et al. (1984) and Perry et al. (1987). The main prob-
lem arising from these studies is the limited velocity-vector acceptance angle of
±45◦ in a conventional X-wire probe. Perry et al. (1987) showed that acceptable
Reynolds stress measurements can be obtained using a probe with an higher ac-
ceptance angle (±60◦) or a flying probe in the stream-wise direction to reduce
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the turbulence intensity. Legg et al. (1984) and Smalley et al. (2001) suggested
that, even using the usual ±45◦, the velocity fluctuation measurements are reli-
able when the fluctuation intensity is smaller than 0.35 and the Reynolds stress
measurements when the fluctuation intensity is minor than 0.25.

2.3.3 Particle Image Velocimetry

A second series of velocity measurements was made with a Stereo Particle Im-
age Velocimetry (Stereo-PIV) system. This technique allows a high spatio-
temporally resolved field description for the three velocity components. The
Stereo-PIV measurements support with spatial information the temporal data
acquired with hot-wire anemometry, and integral length scales can be inferred
from spatial two-points correlations.

Particle Image Velocimetry (PIV) is an established non-intrusive optical tech-
nique for the measurement of flow velocities on a plane. The measuring principle
consists of obtaining the velocity of a fluid by measuring the velocity of tracer
particles in suspension (Raffel et al., 1998; Westerweel, 1997). The measuring
volume is a small region within the fluid, where the flow is considered to be
sufficiently uniform.

PIV requires the determination of particle displacements between two images
separated by a time interval, which is typically of order of µs. Using the auto-
correlation approach, image pairs are divided into small interrogation areas and
the particle displacement is found as the location of a peak in the correlation
map. Once the particle displacement is determined this is divided by the time-
step between the two images resulting in a velocity (Lourenco and Krothapalli,
1995).

The fluid flow was seeded with nominally neutrally buoyant particles gener-
ated by a smog generator, so that the motion of the particles was representative
of the motion of the fluid elements. A planar region of the flow was lighted with
a pulsed laser and tracer position was recorded as a function of time in doubly
exposure photographs.

Stereo-PIV profiles were collected at a distance of 7.5δ from the entrance of
the test section, corresponding to the source position. Velocities were recorded
on two planes: a yz plane perpendicular to the flow direction and a xz plane
parallel to the flow, allowing the measurement of the stream-wise, transverse
and vertical velocity components. The image resolution was 1280x1024 pixels
and the observation field measured approximately 150x100 mm for xz planes
and 215x150 mm for yz planes. In both cases several planes were recorded
at different heights to cover the entire boundary layer height. Images were
processed using a cross-correlation algorithm. The interrogation window for the
correlation cells was fixed to 32x32 pixels with a round form and a standard
50% overlap, providing a spatial resolution of about 2 mm for xz planes and 2.5
mm for yz planes. A total set of 10000 image pairs was acquired sequentially
for time-averaged computations. The sampling frequency was 4 Hz.

2.4 MEAN VELOCITY FIELD

As predicted by the similarity theory (Tennekes and Lumley, 1972), in the lower
part of the boundary layer the vertical profile of mean horizontal velocity fits
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well a logarithmic law. The only length scale is the distance from the ground
z. Care is needed in defining the origin of z, since the roughness of the surface
displaces the entire flow upwards. To account for this, the logarithmic law is
written including the displacement height d:

u(z)

u∗

=
1

k
ln

(
z − d

z0

)
. (2.2)

Thom (1971) found experimentally and Jackson (1981) verified theoretically
that, whatever the origin of z, the displacement height adjusts the reference level
for the velocity profile to the height at which the mean surface shear appears to
act. This definition satisfies the constraint 0 < d < δ. Several techniques have
been proposed for the measurement of the displacement height, as discussed
briefly by Raupach et al. (1991). We chose to calculate d and the roughness
height z0 by fitting the log-law to a measured velocity profile, for a known value
of u∗, determined from profiles of u′w′.

The friction velocity u∗ is the only relevant velocity scale in the TBL and
depends on the nature of the surface and on the magnitude of the wind. Since
the surface stress equals the turbulent momentum flux in the air just above the
surface, u∗ is in some sense representative of the turbulent wind fluctuations in
the lower layers of the atmosphere (Kaimal and Finnigan, 1994). There exists
various similar definitions of the friction velocity that were compared by Weber
(1999). We chose the definition given by Panofsky and Dutton (1984), Garratt
(1992) and Kaimal and Finnigan (1994), according to whom u∗ is given by:

τ0 = −ρu′w′ = ρu2
∗
, (2.3)

where τ0 is the surface stress at the roughness level z = z0 and ρ is the den-
sity of air. This definition assumes that the horizontal Reynolds stress vector
(−ρu′w′,−ρu′v′) reduces to (−ρu′w′, 0) if the u-axis is aligned with the mean
wind. In the atmosphere this is not true in general (Weber, 1999), however in
the lower part of the boundary layer the quantity u′v′ is very small compared
to u′w′ (Figure 2.2). Over the same distance, from (z − d)/δ ≃ 0 to 0.2, u′w′

varies so slowly that can be considered effectively constant: this identifies the
constant stress layer.

u∗ (m/s) z0 (m) d (m)
Method 1 0.185 1.133 · 10−4 0.0129
Method 2 0.2393 5.848 · 10−4 0

Table 2.1: Boundary layer parameters u∗, z0 and d.

We estimated the boundary layer parameters in two ways, and the results are
shown in Table 2.1. In the first way (Method 1), z0 and d where computed by
fitting the log-law to a measured mean velocity profile, assuming that u2

∗
= u′w′.

u∗ was calculated by averaging the u′w′ data in the lower part of the flow field.
In the second way (Method 2), z0 and u∗ were obtained with the fit of the
log-law to a mean velocity profile assuming that d = 0. In all cases, the fitting
has to be applied to the velocity profile in the inertial region, as no theoretical
basis supports the validity of the logarithmic law in the roughness sublayer.
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Figure 2.2: Measured u′v′ and u′w′ and comparison with literature data from
Fackrell and Robins (1982b) and Raupach et al. (1991).

Parameters calculated with Method 1 will be the ones adopted from now
on. The value of the friction velocity calculated with the first method is smaller
than the one obtained with the second method. As it was observed from Weber
(1999), the definition given in Equation 2.3 uses only the longitudinal component
of the Reynolds stress vector and can lead to a slight underestimation of u∗.

δ (m) z0/δ u∗/U∞

Present study 0.8 7.31 · 10−4 0.037
F&R 1.2 2.4 · 10−4 0.047

Table 2.2: Boundary layer characteristics: comparison with literature data from
Fackrell and Robins (1982b), referred to as F&R in the Table.

A comparison with Fackrell and Robins (1982b) is given in Table 2.2. As
predicted by the theory, and as shown in Figure 2.3, Equation 2.2, fits the
velocity profile in a region that slightly exceeds the extent of the inertial region,
for 0.025 ≤ (z − d)/δ ≤ 0.25. Conversely, a good fit of the mean velocity profile
in the whole TBL extent can be obtained by a power law of the form:

u(z)

U∞

=

(
z − d

δ − d

)n

, (2.4)

with the exponent n = 0.21.
The evolution of the boundary layer is shown in Figure 2.3, where vertical

profiles of the non-dimensional mean stream-wise velocity u are plotted at dif-
ferent distances x/δ from the entrance of the wind tunnel. Profiles show that
the boundary layer is slightly evolving in the stream-wise direction, particularly
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Figure 2.3: Vertical profiles of non-dimensional mean stream-wise velocity u,
comparison with literature data from Fackrell and Robins (1982b).

close to the entrance (x/δ < 7) and the exit of the test section (x/δ > 12),
where the flow feels the presence of the converging/diverging systems. For this
reason velocity measurements (as well as the concentration measurements pre-
sented in the second part of this study) where carried out in the central area
of the wind gallery, starting from x/δ = 7.5, where we considered the flow to
be fully developed. Also, at this distance we assume that the development of
coherent structures in the wake of the vortex generators has already reached an
equilibrium condition (Salizzoni et al., 2008).

The profile of u/U∞ is compared to data from F&R, in Figure 2.3a. The
difference in the parameter z0/δ can be the reason for the discrepancies that we
observe between the curves, since the profile from F&R shows a higher mean
gradient close to the wall, resulting in a higher ratio u∗/U∞ (Table 2.2).

2.5 TURBULENT VELOCITY FIELD

A consequence of the similarity theory is that vertical profiles of single point
velocity statistics should collapse to common curves when normalised with u∗

and δ, independent of wall roughness. Figure 2.5 shows normalised profiles
of u′w′ and of the standard deviations σu = (u′2)1/2, σv = (v′2)1/2, σw =
(w′2)1/2 at various distances downwind, measured with HWA and compared
with experiments from Fackrell and Robins (1982b). Non-dimensional profiles of
σw and u′w′ collapse to common curves, while discrepancies are observed for σu

and σv. Data were also compared to Raupach et al. (1991), whose measurements
were made on a variety of surface roughness. Profiles of the standard deviations
collapse, except in the inertial region, that extends close to the surface from
(z − d)/δ ≃ 0 to 0.2. Significant differences are found in the Reynolds stress
profile all along the boundary layer.

The discrepancies that exist between these experiments can be due to three
main reason. The first is the difference in the flow configuration that can result
from the choice of the devices to thicken the boundary-layer, as for example
the vortex generators. Such variations are expected to affect the largest scales
of motion, of the order of the characteristic size and spacing of the thickening
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Figure 2.4: Velocity statistics from HWA measurements.
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device, and hence the turbulent velocities in the outer layer. We can not ex-
clude that such devices could in some way influence the scales of transverse and
vertical fluctuating velocities. For this reason Raupach et al. (1991) suggested
that the best approach is to compare measurements taken in the same experi-
mental situation, provided that the large-scale flow geometry is held constant.
The second cause of discrepancies are errors affecting turbulence measurements
with X-wire probes close to a rough surface. The errors are responsible for the
apparent decrease of u′w′ and σw in the roughness sublayer, as can be observed
in profiles from Raupach et al. (1991) and, with a minor extent, on our profiles
of σw, u′w′ and also on u′v′. To make clear if there were such systematical
errors in the HWA measurements, profiles were compared with Stereo-PIV mea-
surements (Figure 2.5). Profiles of σu, σv and σw superpose, while Reynolds
stresses from Stereo-PIV result higher than the ones measured with HWA. This
is especially true for u′w′, that however conserves the same shape of the HWA
profile and apparently do not show any decrease near the surface. Such a de-
crease is instead evident in u′v′, even though in this case comparisons are made
difficult by the noise affecting the results. For what concerns the mean field,
PIV measurements are little overestimating the corresponding HWA profile at
x/δ = 7.5, nevertheless they are included within the range of variation of HWA
measurements. The third reason is connected with the differences in the wall
roughness, that may alter the conditions of self-similarity, as demonstrated by
Krogstad and Antonia (1994).

2.5.1 Turbulent kinetic energy budget

The turbulent kinetic energy budget in a boundary layer in steady conditions
where the diffusive fluxes are neglected is:

− ∂

∂xj

(
ρujq

2
)
− ∂

∂xj

(ρ

2
u′

ju
′

iu
′

i

)
− ∂

∂xj
pu′

j − ρu′

iu
′

j

∂ui

∂xj
− ε = 0, (2.5)

where q2 = (σ2
u +σ2

v +σ2
w)/2 is the turbulent kinetic energy, p is the fluctuating

kinematic pressure and ε is the average energy dissipation rate. Tensor nota-
tion is used where convenient. The first term in Equation 2.5 is the advection
term, the second is the transport by means of the fluctuating velocity, the third
is the mechanical power transmitted by the pressure stress, the fourth is the
production term and the last is the dissipation, defined as:

ε =
ν

2

(
∂u′

i

∂xj
+

∂u′

j

∂xi

)2

. (2.6)

In the hypothesis of homogeneity in the horizontal planes and considering
the term ∂

∂z (ρWq2) to be negligible, since the vertical mean velocity W ≃ 0,
the budget becomes:

− ∂

∂z

[ρ
2

(
w′u′u′ + w′v′v′ + w′w′w′

)]
− ∂

∂z
pw′ − ρu′w′

∂u

∂z
− ε = 0. (2.7)

In a zero-pressure gradient boundary layer with a slow stream-wise development,
as in our case, it is generally assumed that an equilibrium layer exists near the
surface in which the Reynolds stress is almost constant (u′w′ = u2

∗
), as in
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Figure 2.5: Comparison between velocity moments from HWA and Stereo-PIV
measurements.
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Figure 2.6: Dissipation and production of turbulent kinetic energy. (a) ε1 is
calculated through Equation 2.10, while ε2 through Equation 2.11. (b) Compar-
ison with Fackrell and Robins (1982b) of the non-dimensional vertical profile of
dissipation.

(Figure 2.5e). The theory of the equilibrium layer was developed by Townsend
(1976), who also specified two conditions that must be satisfied for the layer
in order to be in local equilibrium. The first condition is that the equilibrium
layer thickness must be much smaller than the boundary layer height δ, so that
production and dissipation rates within it are independent of the large-scale
flow geometry. The second condition is the equilibrium of the turbulent kinetic
energy budget, that occurs when production and dissipation are so large that the
other terms (transport by means of the fluctuating velocity and the mechanical
power transmitted by the pressure stress) becomes negligible. Then Equation
2.7 reduces to:

ρu′w′
∂u

∂z
+ ε = 0. (2.8)

The equality between production and dissipation in our measurements is shown
in Figure 2.6a.

The direct measurement of ε is rather difficult as it requires the evaluation of
the spatial gradients of the instantaneous velocity at a scale of the order of the
dissipative Kolmogorov scale η, that is given by (Kaimal and Finnigan, 1994)

η =

(
ν3

ε

)1/4

. (2.9)

Such type of measurements were carried out with PIV in stirred vessels by
Baldi and Yianneskis (2004) and Baldi et al. (2004). They state that a spatial
resolution of 2η allows the measurement of the 90% of the energy dissipation,
η being the Kolmogorov length scales, while the 65% can be measured with a
resolution of 9η. Since our PIV measurements did not reach such a resolution,
we calculated the dissipation with the common isotropic approximation (Hinze,
1975)

ε1 =
15ν

u2

(
∂u′

∂t

2)
, (2.10)
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where ν = µ/ρ. This approximation employs Taylor’s hypothesis of frozen tur-
bulence to convert spatial gradients to temporal gradients, through the transfor-
mation x = ut. Such hypothesis assumes that the eddies change imperceptibly
as they are convected by the mean wind past the sensor.

Given the equilibrium layer constraints, from the dimensional analysis of
Equation 2.8 follows another relation for the dissipation rate, based on u∗ and
z − d, the only relevant velocity and length scales:

ε2 =
u3
∗

k(z − d)
. (2.11)

It is worth noting that a priori the estimate of ε by means of Equation 2.10 is not
straightforward, due to inadequacies of hot wire response. The good agreement
shown in Figure 2.6a suggests though the reliability of this method in present
case study.

Figure 2.6b shows the dissipation in the non-dimensional form, εδ/u3
∗
, com-

pared to the experiments of Fackrell and Robins (1982b). Even in this case we
can observe an overall good agreement between the two estimates, even though
the vertical gradient of ε shows slight differences both in the upper (z/δ > 0.15)
and in the lower part (z/δ < 0.15) of the velocity field. Assuming a local equilib-
rium (Equation 2.8), since u′w′ is substantially the same in the two experiments
(Figure 2.4d), the difference in ε can be interpreted as due to a varying ∂u/∂z
. As shown in Figure 2.3, compared to our results ∂u/∂z is higher for F&R in
the surface layer (z/δ < 0.15) and lower for z/δ > 0.15.

2.5.2 Velocity skewness and probability density functions

Third moments w′w′w′ and u′u′u′ are reported in Figure 2.7, where they are
compared to measurements from Raupach et al. (1991). Third moments are
non-dimensionalised in two ways: to their rms value (Figures 2.7a and 2.7b)
and to the friction velocity u∗ (Figures 2.7c and 2.7d).

When plotted as w′w′w′/σ3
w and u′u′u′/σ3

u, third moments are constant
from (z − d)/δ ≃ 0 to (z − d)/δ ≃ 0.4. The behaviour of w′w′w′/σ3

w in the
inertial layer is similar to Raupach’s measurements, as both profiles are constant
with height. Nevertheless, discrepancies appear close to the ground, where
Raupach’s moments are lower than ours. In the case of u′u′u′/σ3

u, the difference
with Raupach’s data is marked all along the boundary layer. Discrepancies
appear also in the outer part of the boundary layer, where our non-dimensional
measurements exhibit lower third moments (in absolute value). This could be
related with the presence of a turbulence grid with squared meshes placed at the
entrance of the test section, which produces velocity fluctuations also above the
boundary layer height (δ). To make clear the origin of such differences, third
moments are non-dimensionalised to u∗ (Figures 2.7c and 2.7d). This second
non-dimensionalisation flattens the differences in the outer part of the TBL
and highlights those in the lower TBL. The fluxes of turbulent kinetic energy
we measured are almost constant in the z-direction, while Raupach’s exhibit
a stronger gradient. The discrepancies between the two data-sets observed in
third moments profiles are much higher than those we discussed for second order
moments.

Probability Density Functions (PDFs) of the three components of velocity,
u′, v′ and w′, are shown in Figure 2.8 for various distances from the wall. PDFs
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Figure 2.7: Velocity triple correlations. In (a) and (b) profiles are normalised
to their rms value, while in (c) and (d) are normalised to u∗. Comparison with
Raupach et al. (1991).
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Figure 2.8: Probability density functions of the three velocity components at
various elevations (z−d)/δ from the ground. The PDFs are normalised to their
rms value.
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are normalised to their rms to point out eventual departures from the Gaussian
form. Since the hypothesis of Gaussian turbulence is widely assumed in stochas-
tic dispersion models (Thomson, 1987), we are interested in understanding by
which degree this hypothesis is satisfied in our boundary layer. Close to the
wall, the PDFs of the three velocity components are very similar to a Gaussian
distribution, such a behaviour is observed up to the limit of the inertial layer, at
z/δ = 0.2. On the contrary, in the outer layer (z/δ = 0.75 and 0.875) the PDFs
diverge substantially from the Gaussian distribution. For measurements in the
outer layer, the PDFs of v′ are symmetrical with respect to v/σv = 0, while the
PDFs of w′ and u′ show a marked asymmetry. The PDF(w) is positively skewed,
in agreement with the behaviour of the skewness w′w′w′ that is positively asym-
metric (Figure 2.7b). The same happens for the u-component, with u′u′u′ that
is negatively asymmetric (Figure 2.7a) and PDF(u) that is negatively skewed.

2.5.3 Velocity spectra

Scalar energy spectra E(k) provide the distribution of energy in the wavenum-
ber space. E(k) represents the contribution to the total kinetic energy from
Fourier modes with wavenumber magnitudes between k and k + dk. According
to Kolmogorov theory of isotropic turbulence (Kolmogorov, 1941), velocity spec-
tra consist of three ranges: the production range, which contains the bulk of the
turbulent energy and where energy is produced by buoyancy and shear; the iner-
tial subrange, where energy is neither produced nor dissipated but handed down
to smaller scales; and the dissipation range, where kinetic energy is converted
to internal energy. The characteristic length scale of the production range is
the Eulerian integral length scale L. Such a scale corresponds roughly to the
maximum of E(k) plotted against the wavenumber (k ∼ 1/L). In the dissipa-
tion range, the scaling length is the so-called Kolmogorov microscale η. The
existence of the inertial subrange is possible if there is a separation between the
length scales in the boundary layer, so that the ratio L >> η. This will be
verified in Paragraph 2.5.5.

In the inertial subrange the u-spectrum should be proportional to ε2/3k−5/3:
the well known -5/3 power law. In this range turbulence is in a local isotropic
condition and the following relation exists between u, v and w spectra (Kaimal
and Finnigan, 1994):

Fv(k) = Fw(k) =
4

3
Fu(k). (2.12)

We tested the existence of the inertial sublayer by verifying the respect of these
conditions, as shown in Figure 2.9. All spectra fall off as k−5/3. The spectra for
v and w are placed higher than u and are separated by ratio that we estimated
to be close to 4/3.

Since measurements are performed in frequency space, the conversion be-
tween spatial and frequency domain is done by invoking the Taylor’s hypothesis
of frozen turbulence. Our observations are defined in terms of the wavenumber
k which corresponds to 2πf/u, where f is the frequency. Spectra of the three
velocity components are shown in Figure 2.10, for growing distances from the
wall. They are normalised using the distance z as a lenghtscale and the friction
velocity u∗ as a velocity scale, and plotted against the dimensionless frequency
n = fz/u.
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A model for u, v and w spectra Su(f), Sv(f), Sw(f) in the frequency domain
was proposed by Kaimal et al. (1972), based on the Kansas experiments: a series
of observations on wind and temperature fluctuations in stable conditions over
a flat, uniform site. Such relations are valid in the inertial subrange, where they
provide the expected -4/3 ratio and are represented by:

fSu(f)

u2
∗

=
102n

(1 + 33n)5/3
(2.13)

fSv(f)

u2
∗

=
17n

(1 + 9.5n)5/3
(2.14)

fSw(f)

u2
∗

=
2.1n

1 + (5.3n)5/3
. (2.15)

The measured spectra show good agreement with Kaimal model in the iner-
tial subrange, as shown in Figure 2.10. Outside the range the model is not valid
and does not fit the measured velocity spectra anymore .

Note that the conversion from wavenumber to frequency domain can be done
by means of the relation :

kF (k) = fS(f) = nS(n), (2.16)

since these expressions represents the same numerical value. Thus, fS(f) can
be plotted as a function of k, f or n without any conversion of units (Kaimal
and Finnigan, 1994).

2.5.4 Two-points spatial correlations

Two-points spatial correlations are the simplest statistics containing information
on the spatial structure of the velocity field. The two-point spatial correlation
coefficient is defined as:

ρii(x, r) =
u′

i(x)u′

i(x + r)

σ2
i

, (2.17)
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Figure 2.10: Velocity spectra of the three velocity components for growing dis-
tances from the wall, z/δ. Comparison with a model extrapolated from field
data (Kaimal et al., 1972).

where u′

i represents velocity fluctuations of u, v and w. Correlation coefficients
were calculated from PIV measurements in the (x, z)- and (y, z)- planes, and
maps of correlation were obtained for the three velocity components in both
planes. We reported in Figure 2.11 the maps obtained for the (x, z)-plane at
the level of the roughness sublayer and in Figure 2.12 for the outer part of
the boundary layer. In the same figures are also shown profiles of correlation
extracted along the x and z axis, perpendicular to the point of correlation. Given
the limited size of the PIV images, the separation is unfortunately not sufficient
to reveal any negative lobes in the correlations. For each velocity component,
we indicate the correlation field as ρii(x, z), ρii(y, z) and the profiles as ρii(x),
ρii(y), ρii(z).

Correlation coefficients in the three directions are sensibly different.
ρww(x, z) is larger in the direction normal to the wall, showing that roughness el-
ements are effective in imparting their influence to the turbulent flow (Krogstad
and Antonia, 1994). The iso-correlation lines can be well approximated by el-
lipses whose semi-major axis is aligned in the z- direction. The spatial extent of
ρww(x, z) and ρvv(x, z) is similar, while the correlation ρuu(x, z) is considerably
wider. In the higher part of the boundary layer, correlations have a greather ex-
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Figure 2.11: Two-point spatial correlations in the lower part of the velocity field.
Measurements in the xz-plane. Contours of the correlations in (a),(c),(e) with
interval 0.3. The profiles are extracted perpendicular to the point, along the x
and z axis.
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Figure 2.12: Two-point spatial correlations in the outer region. Measurements
in the xz-plane. Contours of the correlations in (a),(c),(e) with interval 0.3. The
profiles are extracted perpendicular to the point, along the x and z axis.
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tension compared to their equivalent close to the wall. The correlations ρvv(x, z)
and ρuu(x, z) are tilted with respect to the horizontal due to the shear produced
by the wall roughness, as demonstrated by Krogstad and Antonia (1994) who
compared correlations on rough and smooth walls. Close to the wall the in-
clination is of 36◦ for ρvv(x, z) and of 15◦ for ρuu(x, z). In the higher part of
the boundary layer ρuu(x, z) becomes almost aligned in the x-direction. On the
contrary, the tilt of ρvv(x, z) is increased far from the surface and reaches 44◦.

The profiles of the three correlation functions plotted in Figure 2.11 and in
Figure 2.12 are characterised by a sharp peak at r = 0, that hides the presence
of the horizontal asymptote of the curves for r → 0. This is an evidence that the
influence of viscous effects is limited to a tiny region, and that this characteristic
viscous length scale is smaller than the PIV measuring volume.

2.5.5 Eulerian integral length scales

Eulerian Integral Length Scales (EILS) represent the distance over which the
turbulence remains correlated and are a measure of the size of the energetic
scales of turbulence. In isotropic turbulence, the spatial structure of the large
scale turbulent flow can be fully characterised by a single parameter. This is of
course not the case in the anisotropic and non-homogeneous turbulence within
a boundary layer flow, which is characterised by a variety of scales (Carlotti and
Drobinski, 2004). We therefore evaluated EILS in x, y, z directions for the three
velocity components. Length scales were obtained from measurements carried
out with hot-wire anemometry, where a temporal evolution of turbulence in
the Eulerian sense is recorded, and from two-point spatial correlation from PIV
measurements, allowing a distinction between the x, y and z direction. One
advantage of using two-point correlations is that the length scale is directly
measured from spatial information of flow fields without the use of Taylor’s
frozen turbulence hypothesis.

Eulerian integral length scales from velocity spectra

Eulerian integral length scales are derived from one-dimensional velocity spectra
F (k) as the maximum of the spectra plotted against the wavenumber: k ∼ 1/L
(Kaimal and Finnigan, 1994). According to the velocity components available
from HWA measurements, EILS are defined as Luu, Lvv and Lww. Since the
Taylor’s hypothesis of frozen turbulence were made in order to calculate veloc-
ity spectra (turbulence is frozen in time and transported horizontally past the
observer), it is therefore implicitly assumed that EILS are to be intended in
the mean flow direction (x). Scales Lvv and Lww are shown in Figure 2.13,
non-dimensionalised with the boundary layer depth δ. It was not possible to
evaluate Luu because we could not identify reliably a maximum in our measured
u-spectra. The determination of Lvv and Lww was easier close to the wall and
outside the boundary layer, while more uncertainties affects the scales evalua-
tion in the outer boundary layer, where the maximum of the spectra is identified
with less precision.

We can observe that the scale associated to the transverse velocity Lvv is
about two times the vertical scale Lww, on all the extension of the boundary
layer. The two scales are equal in the region outside the boundary layer, were
the field is influenced by the grid placed at the entrance of the test section. The
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Figure 2.13: Integral length scales derived from velocity spectra.

grid have square meshes and generates a turbulence that is homogeneous and
isotropic, so that structures in the vertical and transverse directions have the
same size.

Eulerian integral length scales from two-points spatial correlations

Two-points spatial correlations from PIV measurements in the (x, z)- and (y, z)-
planes were used here to estimate Eulerian integral length scales Luu, Lvv and
Lww in the three directions x, y, z, as shown in Figure 2.14. Integral length
scales are defined as:

Lii =

∫
∞

0

ρii(x, r)dr, (2.18)

where ρww(x, r) is the correlation coefficient (Eq. 2.17), that can be computed
for the three velocity components.

In order to avoid the uncertainties related to the numerical estimate of the
integral, we assume that the correlation coefficient is an exponential function of
the type:

ρii(x, r) = e−r/Λii , (2.19)

and we assume the scale Λii as a measure of the EILS (this corresponds to
the distance at which the correlation function is equal to e−1 ≃ 0.37 (Tritton,
1988)). The choice of an exponential function is motivated by the form of the
profiles of the correlation functions (see Figure 2.11 and in Figure 2.12), with
an unnoticeable horizontal for r → 0.

By fitting Eq. 2.19 to the data in the x, y, z directions we could compute
nine different length scales, i. e. Luu(x), Luu(y), Luu(z), Lvv(x), Lvv(y), Lvv(z),
Lww(x), Lww(y), Lww(z). With our data, we could not find this value in every
case without extrapolation. This is particularly true for the u component, whose
correlation falls below 0.5 only in the velocity field acquired close to the ground.
In these cases we chose to extrapolate the exponential function up to 0.37. The
same disadvantage occurred to Bewley et al. (2012), who chose to calculate the
scale as the separation at which the correlation functions fall below 0.5, and to
Takimoto et al. (2013) who estimated length scales over surfaces with different
roughness types and used the threshold ρii = 0.4.

Integral length scales Luu, Lvv, Lww from PIV and Lvv, Lww from HWA
measurements are shown in Figure 2.14. Scales from HWA were obtained by
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Figure 2.14: Integral length scales from PIV and HWA measurements, for the
three velocity components. In (a), comparison with the mixing length theory
(referred to as ML).
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means of Taylor’s hypothesis and are intended in the mean flow direction x. The
comparison with PIV measurements show that Lww superpose with Lww(x) in
the streamise direction. Also the transverse scale Lvv is in accord with Lvv(x),
but only in the inertial subrange, while better agreement is observed between
Lvv and Lvv(y).

A comparison is made between Lww and the mixing length (l) from Prandtl’s
hypothesis, defined as (Schlichting and Gersten, 2000):

u′w′ = l2
∣∣∣∣
∂u

∂z

∣∣∣∣
∂u

∂z
. (2.20)

The mixing length is usually assumed as an estimate of the size of larger
scale eddies. Figure 2.14a shows that the estimates of l are very close to Lww(x)
and Lww. Figure 2.14a also shows that these quantities scales as l ∼ 0.4z in the
lower part of the TBL, as predicted by the similarity theory (Garratt, 1992).

Another relation for Lww that is widely used in the parametrisation of turbu-
lence for pollutant dispersion was proposed by Sawford and Stapountzis (1986):

Lww ∼ σw

εδ
, (2.21)

with a proportionality constant that varies between 0.8 (Sawford and Sta-
pountzis, 1986) and 1.8 (Postma et al., 2011a). As shown in Figure 2.15, Equa-
tion 2.21 provides an excellent estimate of Lww assuming a proportionality co-
efficient equal to 0.6.
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Figure 2.15: Integral length scale Lww from PIV measurements, compared to
Equation 2.21 where the proportionality constant assumes the values 0.4, 0.6
and 0.8.

In the case of the v-component, Lvv(x) and Lvv(y) are very close to each
other, with Lvv(y) becoming slightly bigger outside the inertial layer. The
vertical scale Lvv(z) is much smaller than the other two and is about half Lvv(y).

The stream-wise component u is generally characterised by bigger length
scales. The main direction of correlation is x and Luu(x) is by far the biggest in-
tegral length scale in our boundary layer. As observed by Krogstad and Antonia
(1994), scales in the flow direction are highly influenced by the wall roughness.
In the limit case of a smooth wall, the stream-wise extent of the correlation is
much larger for a smooth surface than for a rough wall.
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From the analysis of the integral length scales emerges all the complexity of
the velocity field. Our results show that there exist a great variety of length
scales in our boundary layer and that only one of them, i. e. Lww(z), scales
with z according to the statement of the similarity theory. A study about length
scales in wall-bounded turbulence was conducted by Carlotti and Drobinski
(2004). By means of a combination of two tools (inhomogeneous rapid distortion
theory and high-resolution large-eddy simulations) this study shed some light
on the wide number of length scales needed to characterize the anisotropy of
turbulence. Integral length scales are related to spectra and their asymptotic
behaviour in the surface layer depends on the spectra shape. Carlotti and
Drobinski (2004) show that there is always at least one length scale that does not
scale with z, and that the assumption of proportionality with z is not compatible
with the assumption of a spectrum decaying according to Kolmogorov’s law, but
rather with a spectrum following a -1 power law. Fortunately, such a -1 power
law exists in spectra of high-Reynolds number wall-bounded turbulence.
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Figure 2.16: Integral length scales compared to Krogstad and Antonia (1994).

Integral length scales were compared to the ones estimated by Krogstad
and Antonia (1994), who investigated the effects of surface roughness on turbu-
lent boundary layers. In this case, span-wise and stream-wise length scales are
calculated as the widths, in the x− and y− directions, of the contours of the
correlation function ρuu = 0.3 and ρvv = 0.3. A comparison with our measure-
ments is shown in Figure 2.16, where our integral length scales are calculated by
adopting the same definition used by Krogstad. Length scales from Krogstad
are bigger than ours, in both directions and for both u− and v− components.

The existence of a fully developed turbulence, i.e. of an asymptotic dynam-
ical regime independent of the Reynolds number, is based on the assumption
that the macro scale Lm and the micro (dissipative) scale η characterizing the
flow have to be separated of several orders of magnitude, so that an inertial
region can develop between the two. The experimental estimates of Lm and η
allows us to verify this assumption for the velocity field investigated here.

We calculated η from Equation 2.9 and we estimated a mean integral length
scale Lm as:

Lm = 1/3(Luu(x) + Lvv(y) + Lww(z)), (2.22)

where Luu(x), Lvv(y) and Lww(z) are Eulerian integral length scales from PIV
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measurements. Vertical profiles of η and Lm and the ratio Lm/η are reported
in Figures 2.17a, 2.17b and 2.17c. The Kolmogorov microscale is of the order
of 0.0001 m, while the mean integral length scale Lm is of the order of 0.01
m. Their ratio is therefore included between a minimum of about 145 close to
the wall and a maximum of 230 in the core of the TBL (Figure 2.17c). We
can therefore conclude that in our velocity field the requirement of the scales
separation is satisfied.
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Figure 2.17: Vertical profiles of the Kolmogorov microscale η (a), of the mean
integral length scale Lm (b), of the ratio Lm/η (c) and of Reλ (d).

A further information on the dynamical state of the turbulence can be in-
ferred by computing a Reynolds number, Reλ, based on the Taylor micro scale
as it is customary in homogeneous and isotropic turbulence. This is defined as:

Reλ =
2

3
q2 λ

ν
, (2.23)

where q2 is the turbulent kinetic energy and where the Taylor micro scale is
computed as:

λ =

√
15

2

3
q2

ν

ε
. (2.24)

As shown in Figure 2.17d, in most of the velocity field Reλ is generally
larger than 150. Based on theoretical considerations and previous DNS results
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(Franzese and Cassiani, 2007), this value corresponds to a flow regime that is
not far from an asymptotic state, but is not sufficiently large to prevent a slight
influence of viscous effects on the turbulence dynamics.

2.5.6 Lagrangian time scales and turbulent diffusivity

Finally we focus on two key parameters of the flow which govern the dispersion
mechanisms within a turbulent boundary layer: the Lagrangian time scale TL

and the turbulent diffusivity Dt.
The Lagrangian time scale is a measure of the correlation of fluid particles

velocity in time. In Lagrangian models, TL is the time scale governing turbulent
relative dispersion and appears in the Langevin equation. TL is also needed in
Gaussian models to calculate the turbulent diffusion coefficient Dt, used to
estimate the convective flux by means of a gradient law and the plume spread
downwind the source. In an anisotropy and inhomogeneous velocity field, TL is
a local characteristic of the flow and is defined as:

TL(xi) =

∫
∞

0

ρL(xi, τ)dτ, (2.25)

where ρL(xi, τ) = Ui(xi, t), Ui(xi, t + τ) is the one point correlation function
in time (Tennekes, 1982) and Ui are Lagrangian velocities. The correlaton
decreases as time interval τ increases, and at large times τ the two velocities
are uncorrelated.

The direct measurement of Lagrangian statistics is something hard to do.
Experimentally, it should be necessary to mark a great number of fluid parti-
cles or, alternatively, to introduce in the flow a number of tracers that can be
faithfully transported in the current and then measure the three components of
their velocity while following them in their motion. However there have been
measurements of the spread of puffs or clouds of tracer or of the separation of
pairs of balloons in the atmosphere and in a wide range of conditions and scales
(experiments are summarized in Monin and Yaglom (1975) and in Pasquill and
Smith (1983)).

A great deal of effort has been spent in attempts to predict TL from Eulerian
data. This simple relation proposed by Hay and Pasquill (1959) to infer the
Lagrangian time scale from the Eulerian one is widely used in dispersion models:

β =
TL

TE
= const, (2.26)

where TE is the Eulerian time scale and β is the ratio between Eulerian and La-
grangian time scales. Equation 2.26 establishes a connection between the spatial
structure and the temporal evolution of a flow particle through the assumption
of similarity in the Lagrangian and Eulerian spectra. This implies the idea that
the turbulent flow evolves towards a statistically steady state, independently on
the conditions that generated and maintain such a flow. Several experimental
estimates of β are available and differ significantly one to the other: β is ex-
pected to range from 2-3 to almost 12. Such a variability does not satisfy the
request of finding a universal law valid for all turbulent flows.

Our experimental apparatus does not allow us to measure Lagrangian time
scales directly. Therefore, here we limit ourselves to an analysis of different



2.5. TURBULENT VELOCITY FIELD 41

estimates of Lagrangian time scales in the vertical and transversal direction,
hereafter referred to as TLw and TLv, given by two different parametrisations
usually adopted in the literature and to a verification of their consistency one
to the other. Moving from dimensional considerations, we can obtain an first
estimate of TLw and TLv simply by evaluating a characteristic life time of the
flow larger scale structures as:

TLw1 ∼ Lww

σw
(2.27)

TLv1 ∼ Lvv

σy
. (2.28)

We compare this value with the estimates of the Lagrangian time scale that
are widely adopted in the parametrisation used in pollutant dispersion models:

TLw2 =
2σw

C0ε
(2.29)

TLv2 =
2σv

C0ε
, (2.30)

where C0 is the Kolmogorov constant, whose value in the literature varies be-
tween 2 and 8, and that is usually considered as a free parameter evaluated
a posterori. We will discuss further this variability in Paragraph 4.4.1. The
comparison between the two estimates in the y- and z-directions is plotted in
Figure 2.18, assuming values for C0 between 3 and 6 and shows that the best
agreement is achieved for C0 ≃ 4÷5. As we will see in the next chapters, a value
of C0 included in this same interval provides the best agreement between our ex-
perimental profiles and numerical results obtained with a Lagrangian stochastic
model and an Eulerian analytical model.
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Figure 2.18: Eulerian time scales TEw and TEv from Eqs. 2.27 and 2.28 (blue
circles), compared to Lagrangian time scales TLw and TLv from Eqs. 2.29 and
2.30, where C0 assumes the values 4,5 and 6.

Assuming the simple parametrisation of TLw and TLv given by Eqs. 2.27 and
2.28 we can finally compute the vertical and transverse turbulent diffusivity and
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compare them to literature data. Turbulent diffusivity are estimated as:

Dtz = TLwσ2
w ≃ σwLww (2.31)

Dty = TLvσ
2
v ≃ σvLvv. (2.32)

Figure 2.19 shows that Dtz and Dty vary from about 0 close to the wall to an
approximately constant value just above the inertial region, i. e. z/δ = 0.2. As
expected, values of Dty are about two times larger than those of Dtz. However,
it is worth noting that this difference is mainly due to an enhanced velocity
standard deviation σv (see Figure 2.4b) rather than to a larger size of the large
scale eddies, since Lvv is only about 25% larger than Lvv (see Figure 2.14). As
far as we are aware no literature data are available providing direct estimates
of Dtz, that can not therefore compared to any experimental value. Conversely,
we could compare the modelled Dtz in Equation 2.31 with the experimental
estimates provided by Fackrell and Robins (1982a), who calculated Dtz as:

Dtz =
w′c′

∂C/∂z
, (2.33)

where C is the mean scalar concentration and the correlation w′c′ represents the
vertical turbulent mass flux. The comparison (Figure 2.19) shows remarkable
good agreement between our estimate and the experimental data.

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

z/
δ

 

 
D

ty
/δ u*

D
tz
/δ u*

D
tz
/δ u* F&R

Figure 2.19: Vertical profile of the turbulent diffusivities Dtz and Dty. Compar-
ison with Dtz directly measured by Fackrell and Robins (1982a).



Chapter 3

THE CONCENTRATION

FIELD

3.1 ABSTRACT

The prediction of the probability density function (PDF) of a pollutant concen-
tration within atmospheric turbulent flows is of great importance in assessing
the effects of toxic materials on human health or the hazard related to acci-
dental releases of toxic or flammable substances. This need motivates studies
aiming in characterising the concentration statistics of pollutant dispersing in
turbulent boundary layers, and their dependence on the parameters controlling
their emissions. Here we present a new experimental data set providing a de-
tailed description of the temporal and spatial evolution of a fluctuating neutrally
buoyant plume emitted by a point source within the turbulent boundary layer.
As it is known from the studies conducted by Fackrell and Robins (1982a), con-
centration fluctuations are significantly influenced by the diameter of the source
and by its elevation. In this study, we further inquire into the dependence on
the source configuration, including source size, elevation and emission velocity,
by studying its influence on higher order concentration moments. Vertical and
transversal profiles of first four moments of concentration PDF are presented for
several distances downwind. The data-set includes concentration PDFs, spectra,
functional relationships between concentration moments, intermittency factors,
concentration variance dissipation and production. Their analysis allow us to in-
fer the main mechanisms controlling the scalar dispersion, depending on source
configuration and emission conditions.

3.2 INTRO

The knowledge of the statistics of the concentration of a pollutant substance in
air is useful in a wide range of situations. For example, mean concentrations have
to be estimated in air quality studies in urban areas or in problems of chronic
pollution in order to asses the chronical risk for a subject exposed to some
environmental contamination. However, there are often situations where the
knowledge of the sole mean is insufficient. In the case of a release of flammable
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and explosive substances, what matters is if the instantaneous concentration
locally falls in the limits of flammability (or explosivity). When studying the
dispersion of odours, one is interested in peak concentrations, to whom human
nose is sensitive. Similar needs are encountered in studies of exposure to and
dosages of hazardous materials and peak-to-mean ratios. In all those cases, the
necessity rises of estimating the PDF of concentration, or at least to characterise
its lower moments or their peak values.

To that purpose several modelling approach have been developed. These in-
clude meandering models (Gifford (1959), Yee et al. (1994), Luhar et al. (2000),
Franzese (2003)), particles Lagrangian stochastic models (Durbin (1980), Saw-
ford and Stapountzis (1986)), micro-mixing Lagrangian models (Sawford (2004),
Cassiani et al. (2005a), Cassiani et al. (2005b)).

The validation of all kind of dispersion models needs quality experimental
data. For what concerns concentration fluctuations in neutrally buoyant plumes
from point sources in the TBL, the study of Fackrell and Robins (1982a,b) has
been largely used as a reference. In their study, F&R discussed phenomenolog-
ical and dynamical aspects of the dispersion and the effects of the source size
and of the source elevation. Yee et al. (1993) used dispersion measurements in
a saline neutral plume from an elevated point source (from Wilson et al. (1991))
to test several functional forms for the PDF of scalar concentration. More re-
cently, the meandering of a plume dispersing in a water channel was measured
directly by Hilderman and Wilson (2007) using laser-induced fluorescence. All
these studies however tend to focus mainly on the second order statistics and on
the correlation between velocity and correlation fluctuations. Relatively little
information is available concerning higher order concentration moments. This
is a considerable lack for the modellers aiming in the prediction of the spatial
evolution of the concentration PDFs.

Our study aims in extending the work on source size and elevation conducted
by Fackrell and Robins (1982a,b) to high order concentration moments, with a
detailed definition of the plume structure also in its initial phase of growth. To
that purpose we have conducted a series of experiments on the dispersion of a
passive scalar emitted by a source of varying size and height, within the TBL,
whose dynamics is analysed in the first part of this study. We also investigate
the influence of the emission velocity at the source, that is likely to influence
concentration fluctuation measurements in a non negligible way.

Results are presented in a non-dimensional form, using length, velocity and
mass scales for the non-dimensionalization, so that differences between source
sizes are preserved. The data set includes vertical and transversal profiles of
concentration statistics for several distances from the emission point, concentra-
tion PDFs, functional relationships between concentration moments, spectra,
dissipation of concentration fluctuations, intermittency factor, plume spreads
and peak concentrations.

3.3 CHARACTERISTICS OF SCALAR DIS-

PERSION

Because of the chaotic nature of turbulent flows, the concentration c(xj , t) of
a passive scalar transported within a turbulent boundary layer has to be con-
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sidered as a random variable and is fully described by its Probability Density
Function (PDF). By adopting the Reynolds decomposition, the concentration
can be written as the sum of a mean value C and a fluctuation c′:

c = C + c′. (3.1)

Follow on from the introduction of these quantities, the concentration field can
be described in terms of mean values C and fluctuations c′n, and all the moments
can be calculated by means of the PDF, p(c; xj , t), with the relations:

C(xj) =

∫
∞

−∞

c p(c; xj) dc (3.2)

(c − C)n = c′n =

∫
∞

−∞

[(c − C)n] p(c; xj) dc (3.3)

On the other side, if the moments of the distribution are known, p(c; xj , t) can
be mathematically inferred because the PDF and its moments are in bi-unique
correspondence (Tennekes and Lumley, 1972). Therefore, the ensemble of the
infinite moments and the PDF are equivalent in the description of the random
process.

Considering a passive scalar dispersing in a neutral boundary layer, the
equation for the temporal evolution of the instantaneous concentration is:

∂c

∂t
+

∂

∂xj
(ujc) =

∂

∂xj

(
D

∂c

∂xj

)
, (3.4)

where the terms ujc and D∂c/∂xj represents the advection and the diffusion
mass fluxes respectively. By averaging Eq. 3.4 we obtain an equation of the
evolution of the mean concentration:

∂C

∂t
= − ∂

∂xj

(
ujC + u′

jc
′ − D

∂C

∂xj

)
, (3.5)

where the correlation u′

jc
′ represents the coupling of velocity and concentration

fluctuations.
The presence of the unknown term u′

jc
′ in Eq. 3.5 makes the problem un-

closed. To solve Eq. 3.5 in the x-direction, the convective flux can be modelled
by means of an analogy with Fick law for molecular diffusion, according to the
gradient-transfer theory (Pasquill and Smith, 1983):

u′c′ = −Dtx
∂C

∂x
. (3.6)

In Equation 3.6, the convective flux is assumed proportional to the mean con-
centration gradient as in molecular diffusion processes. The turbulent diffusion
coefficient Dt appears as a propriety of the fluctuating velocity field and it dif-
fers from the molecular diffusivity D because of its greater order of magnitude.
Even if this closure hypothesis is helpful, as it allows the solution of the equa-
tion, it is questionable from a physical point of view. Unlike molecular diffusion,
convective dispersion do not have a local nature and can transport a scalar at
distances of the same order of the flow characteristic length scales.

The convective term can not be neglected, on the contrary his role in dis-
persing the contaminant is of primary importance, as it can be demonstrated
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with an analysis of its order of magnitude. The order of magnitude of u′

jc
′

is estimated as σuσc. The molecular term D∂C/∂xj has a magnitude of the
order of D(dϑ/δ), where dϑ is the variation of C and δ is the boundary layer
height. The difference between dϑ and σc can not be too large, because concen-
tration fluctuations in the atmospheric boundary layer are on average close to
the maximal spatial variation of the mean C. If dϑ and σc are considered to
have the same magnitude, the ratio of molecular and convective terms results
∼ D/(δ σu). Since this ratio is a very small number, the molecular diffusion
can be neglected and Equation 3.5 becomes:

∂C

∂t
= − ∂

∂xj

(
ujC + u′

jc
′

)
. (3.7)

The difference between concentration statistics for a real scalar and one with zero
diffusivity is negligible for the mean concentration at high Reynolds numbers
and high Peclet numbers, except very close to a small source (with respect to
the integral lenght scale and therefore for sources having a size comparable to
the diffusive lenght scale) or a boundary (Sawford, 2001).

Assuming a Lagrangian point of view, in the hypothesis of negligible molec-
ular diffusion and of divergence of the velocity equal to zero, Equation 3.4 can
be rewritten as:

Dc

Dt
= 0 (3.8)

so that on the trajectory dyi = Uidt of a particle emitted from the source (Ui is
the Lagrangian velocity), the concentration is conserved (c = cost). Lagrangian
models use this principle to simulate the dispersion of a scalar in a turbulent
field. They reproduce a number N of trajectories and calculate the mean con-
centration by counting the number of particles that falls in a volume of fluid,
at a given position downwind. Since molecular diffusion is neglected, the pollu-
tant fluid particles do not exchange their mass with the surrounding flow. The
concentration decreases moving far from the source as a consequence of the
dispersion of the released N particles around an imaginary mean trajectory, a
purely convective phenomena.

On the contrary, molecular diffusion processes are not negligible in moments
of concentration other than the mean. This is demonstrated by means of a
dimensional analysis of the terms in the equation for the evolution of the con-
centration variance, described by the following equation:

∂σ2
c

∂t
= − ∂

∂xj

(
ujσ

2
c + u′

jc
′2 − k

∂σ2
c

∂xj

)
− 2u′

jc
′
∂C

∂xj
− 2D

(
∂c′

∂xj

∂c′

∂xj

)
(3.9)

On the left side of Equation 3.9, the terms under the divergence operator are
fluxes of convective or diffusive origin. Their role is to redistribute the variance
in the flow. The second term on the left side of the equation is a source of
variance. The last term is the dissipation of variance εc.

To evaluate the orders of magnitude of the terms in Equation 3.9 and to
better understand the role of molecular diffusion in a scalar transport, such
equation is written in a non-dimensional form. To this purpose, an appropriate
set of scales is chosen for the turbulent boundary layer: the length scales are the
boundary layer depth δ and the Kolmogorov lenght scale η (defined in Equation
2.9), the velocity scale is the free stream velocity U∞, and ∆c = Mq/(U∞δ2)
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is the concentration scale, Mq being the mass flow of contaminant. The non-
dimensional quantities are defined as: x∗

i = xi/δ, u∗

i = ui/U∞, C∗ = C/∆c
and σ∗

c = σc/∆c. Assuming steady conditions and introducing non-dimensional
variables, Equation 3.9 can be rewritten as:

U∞∆c2

δ

(
u∗

j

∂σ2∗
c

∂x∗

j

)
= −U∞∆c2

δ

(
u′∗

j c′∗2
∂C∗
∂x∗

j

)
− U∞∆c2

2δ

(
∂

∂x∗

j

c′2∗u′∗

j

)
−

+
D∆c2

δ2

(
∂2σ2∗

c

∂x′2
j

)
− D∆c2

η2

(
∂c′∗

∂x∗

j

)2

.

(3.10)

Dividing by (U∞∆c2)/δ, we have:

u∗

j

∂σ2∗
c

∂x∗

j

= −u′∗

j c′∗2
∂C∗

∂x∗

j

− 1

2

∂

∂x∗

j

c′2∗u′∗

j +
D

U∞δ

(
∂2σ2∗

c

∂x′2
j

)
− D

U∞η

(
∂c′∗

∂x∗

j

)2

.

(3.11)

The term D
U∞δ

(
∂2σ2∗

c

∂x′2
j

)
is the transport of variance by molecular diffusion.

This phenomenon transports σc (an average value) on length scales of the order
of the boundary layer depth δ. The coefficient D/U∞δ is equal to the reciprocal
of the Peclet numbers and, being very small in atmospheric turbulent flows,

can be neglected. The last term on left side, D
U∞η

(
∂c′∗

∂x∗

j

)2

, is the dissipation of

concentration fluctuations by molecular diffusion. This phenomenon transports
a fluctuating quantity on a length scale η, the Kolmogorov length scale, where
η << δ, characteristic of mass transfers by molecular diffusion. The Kolmogorov
length scale η can be estimated as (Tennekes and Lumley, 1972):

η

δ
∼ U∞η

ν
∼ Re−3/4. (3.12)

The dependence on Re explicits the influence of the flow conditions on the
transport of a scalar and on the statistics of concentration. The term D/U∞η
is of order of ∼ 1 and can not be neglected in Equation 3.11. Equations for
the third and fourth moments of concentration are dependent on the Reynolds
number, as it is the case of the variance. For brevity these equations are not
reported since they do not provide further information from the conceptual point
of view.

Re is not the only parameter influencing the transport of a scalar in the
TBL. Dispersion phenomena also depends on other parameters that arise when
imposing specific boundary conditions.

Generally speaking, considering the dispersion of a pollutant plume emitted
by a localised source, the concentration statistics at a given position (x, y, z) is
function of a series of controlling parameters:

(c − C)n = f (x, y, z, d, hs, us, Mq, z0, u∗, U∞, δ, D, ν) . (3.13)

Some of them depend on the source characteristics, as the source diameter d,
the source elevation hs and the source outlet velocity us. Others are fixed by the
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characteristics of the turbulent boundary layer, this is the case of the roughness
length z0, the friction velocity u∗, the free stream velocity U∞, the boundary
layer depth δ, the molecular diffusivity D and the kinematic viscosity ν.

To identify the other governing parameters we can express Equation 3.13 in
non-dimensional form as:

(c − C)n

∆c
= f2

(
x

δ
,
y

δ
,
z

δ
,
z0

δ
,

u∗

U∞

,
us

U∞

,
hs

δ
,
d

δ
, Re, Sc

)
, (3.14)

where Sc = ν/D is the Smidth number.
If we assume that the dispersion process takes place within a fully turbu-

lent boundary layer, characterised by the asymptotical conditions z0/δ → 0 and
Re → ∞, implying a self-similarity of the velocity field, the ratio u∗/U∞ be-
comes an invariant dynamical parameter. This allows the reduction of Equation
3.14 to

(c − C)n

∆c
= f3

(
x

δ
,
y

δ
,
z

δ
,

us

U∞

,
hs

δ
,
d

δ
, Re, Sc

)
. (3.15)

When measuring the dispersion of a scalar, one wish to suppress the influence
of the source, as if the scalar was emitted by an infinitely small source whose
presence does not influence the flow dynamics. In our experimental campaign
we have tested the influence of three parameters: d/δ, hs/δ and us/U∞.

To understand the influence of the source size d/δ on concentration fluctu-
ations, it is useful to refer to the conceptual framework developed by Gifford
(1959). In Gifford model, the spread of a plume of contaminant is led by two
phenomena: a meandering movement of the instantaneous plume, causing the
displacement of the mass center, and the relative dispersion, or spreading, of
the plume particles relative to the mass center position. The plume mean con-
centration profiles are Gaussian and their spread σ is calculated by summing
the meandering and the relative dispersion contributions, respectively σm and
σr :

σ2 = σ2
r + σ2

m. (3.16)

These phenomena can be considered as statistically independent, since they are
related to length scales separated by some orders of magnitude. The predomi-
nance of one of the two phenomena depends on the plume scales compared to
the turbulence scales, at a given distance downwind. In the near field, if a small
enough source (having a small size compared to the local turbulence scales) is
considered, meandering is the major contribution to concentration fluctuations.
To understand the influence of the source size on the meandering motion, for a
short fetch downstream x we can write (Fackrell and Robins, 1982a):

σ2
m ∼ σvx/u (3.17)

σv is the lateral turbulence level and u the mean wind speed, whereas:

σ2
r ∼ δvx/u (3.18)

where δv is the initial relative dispersion speed of the instantaneous plume. Since
δv << σv, the intensity of concentration fluctuations, σc, can be written as:

1 + σc ≃ σ2
m/σ2

r ≃ (σ2
0 + (σvx/u)2)/σ2

0 (3.19)
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σ0 is the initial spread due to the source size and is equal to the source diameter.
Thus, for σθ = σv/u, it follows that:

σc ≃ (σθx/σ0)
2. (3.20)

At a given position, the smallest source generates the highest concentration
fluctuations. Moving far from the source, meandering is not the only source
of fluctuations. Since the instantaneous plume begins to spread and develops a
fine scale structure also resulting in fluctuations, the relative dispersion becomes
more and more influent. Far downwind relative dispersion prevails and the
influence of the source size on the concentration statistics is negligible. The role
of the source elevation hs/δ can be expressed by similar arguments, since plumes
from ground level and elevated sources are subjected to different turbulence
scales and feel the influence of the wall with a different degree.

We finally discuss the influence of us/U∞. In this representation of the
problem (Equation 3.15), it is implicitly assumed that the parameter us/U∞ is
the sole characterising the dynamical conditions of the flow particles emitted
at the source. It is usually supposed, even if not explicitly proved, that if the
emission is isokinetic the influence of the emission conditions on the particles
trajectories is minimized since, once ejected, the flow particles rapidly take
the statistics of the external velocity field. It is therefore recommended that the
outlet velocity at the source equals the average velocity of the flow over its height
(Fackrell and Robins, 1982a). In this condition, the ratio us/us = 1, where us

is the mean velocity in the field at the stack height, and us/U∞ = f(hs/δ).
Therefore, for a given hs the ratio us/U∞ = const and one expects that the
influence of the source, at least for what concerns the mean concentration, is left
behind for distances of about ten times the source diameter. Since this aspect
deserves to be studied in depth, we analysed the influence of the variation of
the ratio us/U∞.

3.4 EXPERIMENTAL SET-UP

The experiments were performed in the atmospheric wind tunnel of the Labo-
ratoire de Mécanique des Fluides et d’Acoustique de l’Ecole Centrale de Lyon,
France. Dispersion took place in the TBL described in Chapter 2. The bound-
ary layer height δ was equal to 0.8 m. The reference free-stream velocity U∞ at
the boundary layer height was set at 5 ms−1 and the friction velocity was equal
to 0.185 ms−1.

Dispersion phenomena from a point source above the array of obstacles were
studied by injecting ethane (C2H6), a passive tracer neutrally buoyant in air.
Concentrations were measured by a Flame Ionization Detector (FID), with a
sampling frequency of 1000 Hz. Three source configurations were chosen to
investigate the effects of source size and source elevation on the plume dispersion:

GLS. Ground Level Source with an elevation hs/δ = 0.0625 and a diameter of
3 mm,

ES 3mm. Elevated Source with hs/δ = 0.19 and a diameter of d/δ = 0.00375
(3 mm),

ES 6mm. Elevated Source with hs/δ = 0.19 and a diameter of d/δ = 0.0075
(6 mm).
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The sources consisted in a metallic tube in form of L and were placed at a
distance of 7.5δ from the beginning of the test section, where the boundary
layer was fully developed. With the intent of reducing the influence of the
vertical bar on the tracer dispersion, the horizontal side was approximately 30
times the source diameter. The source was fully streamlined. Source diameter
to boundary layer height ratios (d/δ) are equal to 0.0037 and 0.0075. Given
these low values of d/δ and since the first measurement profile is located at a
distance of approximately 100d, according to Fackrell and Robins (1982a), the
sources can be effectively considered as point sources. It is also important to
notice that the diameters are comprised between the Kolmogorov microscale
(η/δ ∼ 0.0001) and what we identified (in Paragraph 2.5.5) as a mean integral
length scale (Lm/δ ∼ 0.01). This condition allows for a distinction between the
behaviour of a plume issued from the small source (3 mm) with respect to a
plume from the big (6 mm) source, since they interact differently with the scales
of motion. The meandering motion is predominant on the relative dispersion
until the plume size is smaller than the turbulence scale (Gifford, 1959), e. g.
Lm, at a certain distance from the source. The mechanism of relative dispersion
prevails if the plume scales are of the same order of, or bigger than, Lm.

For each source configuration, the ethane flow was injected in isokinetic
conditions, i.e. with an outlet (spatially averaged) velocity us equal to that
in the surrounding at the source height us = u(z = hs). In this way the
release rate employed was low ensuring that the gas was quickly diluted and
that passive diffusion started near the source. To investigate the influence of
the outlet velocity at the source, we also performed measurements in hypokinetic
conditions, that is to say that the outlet velocity was slower than the velocity
field at the same height(us = 0.03us).

Data acquisition was performed with a LabView routine recording time series
of the concentration and the volume flow rate injected at the source. Tempera-
ture in the test section and atmospheric pressure are also recorded.

3.4.1 Fast Flame Ionisation Detector

Concentration measurements were performed with a Fast Flame Ionisation De-
tector (FID) by detecting a gas tracer continuously discharged from a point
source. Ethane (C2H6) was used as tracer in the experiments and was released
mixed with air. This gas is not reactive and has a density similar to air - about
1.2 kg/m3 at 22◦C (the temperature in the test section during experiments) and
ambient pressure. Thus the release obtained was neutrally buoyant and passive.

The fast flame ionisation detector measures hydrocarbons concentration in
air. The physical phenomenon exploited is that when a hydrocarbon is burnt,
significant quantities of ions are formed. The amount of ions produced by the
combustion is proportional to the concentration of hydrocarbons. Air containing
hydrocarbons is aspirated continuously by a tube, which is very thin not to
perturb the flow, and is injected into a hydrogen flame. A current is induced
by the ions collected to an electrode that is proportional to the concentration
of ethane in air (Fackrell, 1980).

The instrument used in this research was an HFR400 Fast FID, produced by
Cambustion LTD. The sampling tube was 0.3 m long. The sampling frequency
was 1000 Hz, so that concentration spectra were calculated with a frequency up
to 300 Hz (Figure 3.1).
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Figure 3.1: A measured concentration spectra.

3.4.2 The experimental protocol

To describe the dispersion from a point source vertical and transversal profiles
of fluctuating concentration were recorded at various distances downwind. The
first measurement station was placed at x = 0.3125δ from the source in the
x-direction, while the last station was at x = 5δ. The recorded concentration
signals were all strongly intermittent. Some characteristic signals are reported
in Figure 3.2. In the first image (a) is shown a signal from the elevated source
with diameter 6 mm, recorded near the source. This signal is extremely inter-
mittent with its bulk about zero and high peaks with intensity 30 times greater
than the mean concentration. At the latest station downstream (Figure 3.2b),
the signal becomes less intermittent as the plume entrain clean air and get more
mixed. However, concentrated peaks (up to 12 times the mean) are still fre-
quently recorded, due to concentrated puffs advectively transported downwind.
A different behaviour in the far field is shown by the ground level source (Fig-
ure 3.2c). In this case the signal oscillate about its mean and the intermittency
is low. This signal is representative of a plume efficiently mixed by the surface
generated turbulence.

While measuring very intermittent signals we have to deal with a wide range
of concentration levels and we found that this caused two main difficulties. The
first was due to the recording of the signal on the data acquisition card, as we
expected a satisfactory dynamic in the lower part of the signal (to record all
events happening about zero) and at the same time we wanted the sparks to
be recorded too. The second difficulty was connected to the calibration of the
instrument, as we wanted the entire signal to be within the limits of calibration.
To overcome these two constraints we acted on two fronts: the calibration of
the instrument and the concentration level at the source.

Calibration of the FID

The calibration procedure consists in exposing the FID to gases with a known
and controlled concentration and in measuring the instrument response in form
of voltage (Volt). The relation between concentration in the gas and tension
response is usually supposed to be linear. The slope of the calibration line in-
terpolating the data is the calibration coefficient, representing the sensitivity
of the instrument (S, measured in ppm/V). By means of the sensitivity, the
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Figure 3.2: Concentration signals in the near and far fields, on the plume cen-
terline, for elevated and ground level sources. C∗ is the signal mean and γc its
intermittency factor (see Paragraph 3.5.8).
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output signal is converted into a concentration signal. The calibration was car-
ried out two-times a day using a mixture from the commerce having a certified
concentration equal to 0, 500, 1000 and 5000 ppm. We chose to work with gas
bottles because this allowed a controlled concentration easy to be managed com-
pared to the case of using self-made mixtures. At each measurement station,
the concentration level of the emitted gas was chosen to assure a good dynamic
in the measure and to be within the limits of calibration. This means that for
measurements near the source, we worked with very low ethane concentrations
to be within the limits of calibration and that far from the source, we increased
the tracer to have a satisfactory dynamic. Difficulties in coping with very in-
termittent signals were also found by other authors (e.g. Fackrell and Robins
(1982a)).

The flow control system

The gas emitted at the source was a mixture of air and ethane. Ethane was
stocked in bottles, while air was provided by an air compressor. Air passed
through an oil-separator and a filter before being injected, to reduce residual oil
and dust. The flow control system was composed by two lines (ethane and air)
being structured in the same way. The gas flow was adjusted with a mass flow
controller and than checked with a flowmetre. In the ethane line, the mass flow
controller worked in the range 0-2 Nl/min and should be used for flows within
10 and 100% of the nominal range. The flowmetre allowed a continuous control
on the flow. The information was sent to the LabView routine where mass
flow was converted in volume flow rate, knowing the temperature in the test
section and the atmospheric pression. The volume flow rate was recorded on a
file during the concentration acquisition, with a frequency corresponding to the
FID sampling one. For each time series of concentration, the correspondent time
series of ethane and air flow were recorded too. This was a solution to reduce
systematic errors occurring in the flow control stage, but also an advantage for
the adimensionalisation of concentration measurements. At last, ethane and
air lines converge through a valve and the flow is directed to the source to be
injected in the test section.

A second control on the ethane flow was realised una tantum with a volumet-
ric counter. The percent difference between the two techniques (mass flow con-
troller and volumetric counter) was calculated as (Qcounter−Qmeter)/Qcounter ∗
100 (Figure 3.3). In the range of operation of the mass flow controller (from
12 to 120 l/h) the percent difference was 0.5 to 1.5%. At the occurrence, for
measurements very close to the source, we worked with ethane flow rates about
3 l/h. In this case we were situated outside the working range of the instrument
and the percent difference reached ±3%. Therefore, we expect that the mea-
surements near the source are affected by a greater error due to inaccuracies in
the ethane flow rate.

Background concentration

The tracer emitted from the source recirculates in the wind tunnel and tend
to accumulate in the test section. This causes the Background Concentration
(BC) to raise considerably before reaching a steady condition. To integrate this
variation in the measurements, the background concentration is measured before
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Figure 3.3: Comparison between the ethane volume flow rate injected in the test
section (y-axis) and the volume flow rate measured with a volumetric controller
(x-axis). The injected flow is measured with a mass flowmetre and converted
to a volume flow by the acquisition routine, as atmospheric pressure and test
section temperature are known. The points are linearly interpolated with a line
of equation y=0.98x+0.4.

and after each measurement point. Two cases can take place: the background
rises so that BC(t = 0s) < BC(t = 300s) or the background is stationary, so
that BC(t = 0s) ∼ BC(t = 300s). The difference between the BC at times 0
and 300 s is then equally shared on the output signal. For a given measurement
point, the concentration is obtained as the difference between the output signal
and the background noise.

Atmospheric aerosol sampling

Similarly to what has been observed in previous studies (Hall and Emmott,
1991), during the wind tunnel experiments, we found abnormal spikes in the
FID output signal. It is believed that their apparition is due to the sampling of
atmospheric aerosol. The spikes we measured were of short duration and had
peaks equivalent in shape to the ethane signal. Since the FID reacts to ionis-
able gases, as the tracer, as well as to small combustible particles in the flow,
so atmospheric aereosol can interact with the tracer to form anomalous pics.
Such peaks were specially visible in the far field, were the plume is diluted, but
also present in the near field, still detectable but most of the time camouflaged
within the signal. Their intensity was independent of the position. The spike
presence does not affect the mean concentration measurements, but is particu-
larly annoying because it hamper the convergence of high order concentration
moments which are much more sensibles to anomalies in the signal.

To inquire the origin of the peaks, the background noise was recorded in
the wind tunnel while the source was not emitting. In the background noise
the spikes produced a strong signal of very short duration with intensity up
to 700 ppm (around 7 V). Compared to the concentration signal, the peaks in
the background noise had unchanged intensity but smaller amplitude. Output
signals are reported in adimensionalised form (Figure 3.4), using a concentration
scale ∆c = Mq/U∞δ2, where Mq is the ethane mass flow injected at the source
in kgs−1, U∞ is the free stream velocity and δ is the boundary layer height. The
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(a) Signal with atmospheric aerosol sampling (3 seconds).
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(b) Signal without atmospheric aerosol sampling (3 seconds).
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(c) Background noise with atmospheric aerosol sampling (1000 seconds).

Figure 3.4: Comparison between adimensionalised concentration signal c∗ with
(a) and without (b) sampling of atmospheric aerosol. Figures refer to the same
point situated at a distance x/δ = 1.25, at the centre of the wind tunnel. Figure
(c) represents the background noise, concentration is measured in ppm.
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background noise is reported in ppm.
Two solutions were proposed by Hall and Emmott (1991) to reduce the

scale of particulate generated spikes in the output signal. The first was to trap
the particles in the sampling line by filtering the line using a small cyclone
separator, which was made by winding a few turns of the sampling line into
the FID around a small diameter former. However, the performance of the
instrument are critically dependent on the low internal volume and short length
of the sampling line. We therefore decided not to adopt this technique in order
to preserve the 300 Hz frequency response. We retained Hall and Emmott
second proposal to filter the output signal applying a low-pass filter. To filter
the signal and separate the noise we need to set a threshold frequency. This task
was revealed not to be easy. When atmospheric aereosol and ethane puffs are
sampled together, the output signal results from some combination of the two
effects and spikes have a more complex form. What is more, spikes of medium
intensity can not be distinguished from the real signal. This produces an over-
estimation of the third and fourth moments of concentration. We tested the
frequency threshold looking at the impact of filtering the signal on the third
and fourth moments. We saw that every small changes in the signal produced
a huge effect on the moments and that no threshold allowed the convergence to
some result.

As the atmospheric aerosol show pronounced seasonal variations, a new set
of concentration measurements was then performed during the months of Octo-
ber and November 2012 and signals compared with the measurements of spring
and summer 2012. A study about the seasonal variability in the composition
of aerosols was conducted for the northwestern Mediterranean region by Berga-
metti et al. (1989), who considered some elements which are indicators of the
major aerosol sources (soil erosion: aluminium Al and silicon Si; pollution: lead
Pb and sulfur S). High variability of atmospheric concentration is observed on
times scales of the order of the day, specially for Al and Si showing high concen-
tration episodes frequently observed during summer and spring. Low concen-
tration levels where observed for all elements when the atmosphere was locally
washed by rain. Short-term variations of atmospheric concentration are super-
imposed on a seasonal pattern. Two period of the year are distinguished: higher
aerosol concentrations are measured from May to October, and lower from Oc-
tober to April. This difference is due to a seasonal change in continental source
strengths and a different removal rate for atmospheric particles between these
two periods.

The reduction of aerosols in aerosol concentration in the atmosphere greately
reduced the number of spikes in the October and November FID measurements.
These measurements cover the entire campaign and we decided not to apply any
filter. Consequently, spikes remain in the output signal and contribute to the
uncertainty in the measurements.

Convergence and experimental errors

For each measurement point an averaging time of 300 seconds was chosen as
it allowed the convergence to be achieved for the moments of concentration.
The statistics extracted from the time series include the mean, the standard
deviation, the third and the fourth moments of concentration. The convergence
of concentration statistics (showed in Figure 3.5) is estimated by means of the
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ĉ
1 /

ĉ
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Figure 3.5: Convergence of the time series concentration statistics.
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ratio ĉn/ĉn
∞, where ĉn is the cumulative mean and n = 1, 2, 3, 4 is the order of

the moment. ĉn is calculated as:

ĉn =

(∑Nt

i=1
cn
i

Nt

)1/n

(3.21)

where Nt(t) is the number of points composing the signal until the instant t. ĉn
∞

is the value of the cumulative mean at the end of the record, after 300 seconds.
The Relative Error (RE) is evaluated on the last 20 seconds of acquisition (∆t)
as:

RE =
ĉn(∆t) − ĉn

∞

ĉn
∞

∗ 100. (3.22)

Mean and maximum RE, that are reported in Table 3.1, are about 1%, meaning
that a sampling time of 300 seconds is sufficient to reach the convergence of
the concentration moments. While increasing the order of the moment, the
maximum error becomes slightly larger.

mean(RE) % max(RE) %

ĉ1 0.27 0.72

ĉ2 0.16 0.58

ĉ3 0.20 1.09

ĉ4 -0.14 0.95

Table 3.1: Mean and maximum RE of the concentration statistics.

There can be several sources of experimental errors. These include the
stochastic uncertainty of the statistics calculated from finite length time series,
the uncertainty due to limitations of instrumentation, the calibration errors, the
sampling of atmospheric aerosols and the error in the source flow rate. The rel-
ative influence of each of these factors is however difficult to estimate a priori.
Therefore, in order to quantify the global error characterising the experimental
uncertainty, we have collected 20 measurements in four fixed locations with re-
spect to the source. These measurements were performed in different days, with
a time interval of several weeks one to the other, and therefore take into account
all incertitudes due to the experimental chain. The error was then estimated as
two times the standard deviation of the distribution of the 20 values collected for
each point. The results are given in Table 3.2 and show that, in the far field, the
first two moments of the concentration are affected by an error of 2 %, whereas
for the third and the fourth order moments the errors rise up to 4.5 %. In the
near field, the measurements were affected by a higher error in the source flow
rate, as explained in Paragraph 3.4.2. The uncertainty in the source strength,
is reflected linearly on the concentration moments and enhance in particular
the error on the first two moment, on the mean and on the standard deviation,
whose uncertainty becomes close to that of the source flow control system, i.e.
±3%.
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ĉ1 ĉ2 ĉ3 ĉ4

Near field (x/δ ≤ 0.625) 2 2 3.5 4.5
Far field (x/δ ≥ 0.625) 3 3 3.5 4.5

Table 3.2: Global experimental error (%) of the concentration statistics.

3.5 RESULTS

Concentration measurements are presented in a non dimensional form. The
non-dimensional instantaneous concentration c∗ is calculated as:

c∗ =
c

∆c
; ∆c =

Mq

U∞δ2
(3.23)

where c is the time-dependent concentration, Mq is the ethane mass flow injected
at the source and recorded at every time step (kgs−1), U∞ is the free stream
velocity, δ is the boundary layer height. The non-dimensional concentration
signal was used to calculate all the statistics in this document.

Our analysis will mainly focus on horizontal profiles of concentration statis-
tics. For completeness, all vertical profiles are presented in the Annexe 7.1.

3.5.1 Concentration PDFs

The one-point Probability Density Function (PDF) of concentration defines the
distribution of scalar values found at a fixed point in the plume and provides sta-
tistical information on the frequency of concentration above a critical threshold
value.

A qualitative analysis of the concentration Probability Density Functions
(PDFs) is carried out to investigate the influence of the source size and elevation.
PDFs are reported in the non-dimensional form PDF/(Ndc), where N is the
number of points on which the PDF is calculated and dc is the amplitude of the
concentration classes.

Figure 3.6 shows the PDFs for the ground level source, measured on the
plume center line at various distances downwind. The shape of the PDF evolves
with increasing the distance from the source. We focused on the bulk of the
PDF, that is found at small concentration, even if it is important to remember
that also the tail of the distribution is essential in determining the characteristics
of the concentration field as, for example, peak concentrations. Near the source
the distribution has an exponential form. Going far downwind, the PDF evolves
towards a Gaussian distribution, as the plume gradually feels the presence of
the ground. At the last measurement station, x/δ = 5, the distribution is
perfectly Gaussian and symmetric, with its mean corresponding to the mean
concentration.

The concentration distribution of a plume dispersing in the wake of a ground
level source was studied by means of a conceptual model by Villermaux and
Duplat (2003), who demonstrated that the concentration PDF is well described
by a family of one-parameter gamma distributions with the following form:

p(χ) =
kk

Γ(k)
χk−1exp(−kχ), (3.24)
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(c) GLS, x/δ = 3.75
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(d) GLS, x/δ = 5

Figure 3.6: Probability density functions on the plume centre line, at a growing
distance downstream for the emission from a ground level source. Comparaison
with the gamma distribution.

where Γ(x) is the gamma function and χ ≡ c/c is the normalised concentration
(c being the ensemble average of the instantaneous concentration c). Equation
3.24 depends on a single parameter k, which specifies the gamma distribution,
and that can be related to the concentration statistics as k = c2/σ2

c , being
σ2

c the concentration variance. Lately, Yee and Skvortsov (2011) showed by
means of experimental data, that the gamma distribution well approximated
the evolution of the concentration PDF along the mean-plume centreline of a
ground level continuous point source in a wall-shear layer. They also provided
a prediction of the downstream evolution of the parameter k and demonstrated
that k has a power law dependency on x.

The gamma distribution was compared to our experimental PDFs in Fig-
ure 3.6 and in Figure 3.7. It is interesting to see that there is a general agreement
between Equation 3.24 and experimental data, since the gamma distribution is
rather efficient in changing shape while increasing the distance from the source,
therefore passing from an exponential-like distribution to something close to a
Gaussian. Particularly close to the source, the gamma distribution clearly agrees
with experimental data. In the far field, however, we observe some discrepancies
about the position of the maximum of the distribution.
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(b) ES, x/δ = 1.25
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(c) ES, x/δ = 3.75
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(d) ES, x/δ = 5

Figure 3.7: Probability density functions on the plume centre line, at a growing
distance from the source, for the two elevated sources with 3 mm and 6 mm
diameter. Comparaison with the gamma distribution.

The gamma distribution was also compared to the experimental PDFs ob-
tained with measurements in the case of the elevated sources. PDFs were mea-
sured on the plume center line at various distances from the source and are
shown in Figure 3.7. Also in this case the shape of the PDF evolves for increas-
ing distances from the source: from exponential-like to Gaussian.

The PDFs at increasing distances from the source for ground-level and ele-
vated emissions are significantly different one to the other. However, differences
between PDFs on signals within plumes emitted from sources of different size
can not be clearly identified. Only small differences are observed between the
experimental PDFs of the 3 mm and the 6 mm elevated source in the near field.
Higher concentration values about zero are more frequently measured for the
smaller 3 mm source, as a consequence of the more fluctuating character of the
plume issued from a small point source. Moving far downwind the difference
between the two sources almost disappears and it seems that the source size
has no influence on the PDF. The gamma distribution do not allow for any di-
rect distinction between the two source dimensions, even though the parameter
k includes implicitly in its definition the consequences on concentration fluctu-
ations that depend on the source size. Nevertheless, the plot of the gamma
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distribution for the two source sizes in Figure 3.7 do not show a recognisable
influence of the source size. To understand which are the effects of the source
dimension on concentration fluctuations we can not rely on PDFs but we can
instead investigate other concentration statistics.

3.5.2 Mean concentration field

The non-dimensional mean concentration C∗ is calculated as:

C∗ =
1

N

N∑

j=1

c∗j , (3.25)

where c∗ is the non-dimensional instantaneous concentration and N the number
of samples in the time-series.

Transversal profiles of the mean concentration downwind the source are
shown in Figure 3.8 for the case of the Elevated Sources (ES) and in Figure 3.9
for the case of the Ground Level Source (GLS). Vertical profiles are reported in
Figure 3.10 for the case of the Elevated Sources (ES) and in Figure 3.11 for the
case of the Ground Level Source (GLS).

For both ES and GLS, transverse profiles measured at the source height are
satisfactory reproduced by a Gaussian distribution of the type:

C(x, y) = Cmax(x) exp

(
− y2

2σ2
y

)
. (3.26)

Vertical profiles were measured on the plume axis. When the plume is at
the ground level, the Gaussian distribution with total reflection on the ground
is the most suited to reproduce the concentration distribution in the vertical
direction:

C(x, z) = Cmax(x)

[
exp

(
− (z + hs)

2

2σ2
z

)
+ exp

(
− (z − hs)

2

2σ2
z

)]
. (3.27)

For the ES, the plume touch the ground at x/δ = 2.5, while in the GLS case
the plume is at the ground level soon after the release. These Gaussian distribu-
tions were fitted to mean concentration profiles and used to estimate the plume
spreads, σy and σz, in the y- and z- directions (see Paragraph 3.5.3).

Mean concentration profiles do not show any particular effect of the source
size. Only the profile very close to the source (x/δ = 0.3125) shows a little
scatter, which should be attributed to the influence of the source conditions
on the concentration field. This subject is analysed in Paragraph 3.5.7, where
we examined the velocity field in the proximity of the emission point and we
observed that the plume is affected by the wake of the source and by the jet
effect resulting from the isokinetic emission.

The effect of source elevation is shown in Figure 3.9, where transversal pro-
files for the GLS and ES with the same size are compared. As soon as the GLS
plume approaches the ground, its mean concentration becomes larger than the
one measured for the ES, due to the plume reflection. The GLS maximum mean
concentration is about two times the concentration reached by the ES plume.
Only in the very near field the situation is reversed and the ES plume is found
to have a higher concentration (Figure 3.9a). This situation can be explained by
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Figure 3.8: Transversal profiles of non-dimensional mean concentration for the
elevated sources, at various distances downwind. Profiles were measured at the
source heigth, zs/δ = 0.19. Blue circles: source diameter 6 mm; red triangles:
source diameter 3 mm.
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Figure 3.9: Transversal profiles of non-dimensional mean concentration for the
ground level source with diameter 3 mm, at various distances downwind. Profiles
were measured at the source heigth, zs/δ = 0.0625. A comparison is made with
the elevated source having the same diameter.
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Figure 3.10: Vertical profiles of non-dimensional mean concentration for the
elevated sources, at various distances downwind. Profiles were measured on the
plume axis. Blue circles: source diameter 6 mm; red triangles: source diameter
3 mm.
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Figure 3.11: Vertical profiles of non-dimensional mean concentration for the
ground level source, at various distances downwind. Profiles were measured on
the plume axis. The source diameter is equal to 3 mm.
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Figure 3.12: Self-similarity of transversal and vertical profiles of the non-
dimensional mean concentration and of the intensity of concentration fluctu-
ations. Elevated source: a) C/Cmax(y), b) σc/C(y). Ground level source: c)
C/Cmax(y) , d) σc/C(y), e) C/Cmax(z), f) σc/C(z).
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the fact that the GLS plume touches the ground immediately after the release,
as it can be seen in Figure 3.11.

Transverse profiles of mean concentration have a self-similar form (as shown
in Figure 3.12a for the ES case and in Figure 3.12c for the GLS case) when non-
dimensionalised as C/Cmax and plotted with respect to y/σy. The intensity of
concentration fluctuations σc/C also approaches a similar form, especially when
moving away from the source, when plotted with respect to y/σy, as shown in
Figures 3.12b (ES) and 3.12d (GLS).

Conversely, vertical profiles are generally far from self-similarity. Vertical
profiles of mean concentration becomes self similar only when the plume touch
the ground and its maximum concentration is situated at ground level. The
GLS concentration field becomes self-similar starting from x/δ = 2.5, as shown
in Figure 3.12e, where vertical mean concentration profiles C/Cmax collapse
when plotted with respect to z/σz. The same behaviour is observed for the
intensity of concentration fluctuations (Figure 3.12f) which is self-similar in
the vertical direction. For what concerns the elevated sources, in the range of
distances investigated, vertical profiles never attain self-similarity.

3.5.3 Plume spreads
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Figure 3.13: Experimental and modelled plume spreads σz and σy downstream
the source. The modelled spreads are calculated by means of Equation 3.29 and
3.28

Vertical and transversal plume spread (σz and σy) are shown in Figure 3.13.
For both the ES and the GLS, in the near field as well as in the far field, vertical
spread was observed to be less than lateral. The effect of the source size on the
ES spreads is negligible: the two courbes collapse at every downwind station.

Plume spread are modelled moving from Taylor’s dispersion statistical the-
ory, that provides the following relations:

σ2
y = σ2

0 + 2σ2
vTLv

{
t − TLv

[
1 − exp

(
− t

TLv

)]}
, (3.28)

σ2
z = σ2

0 + 2σ2
wTLw

{
t − TLw

[
1 − exp

(
− t

TLw

)]}
, (3.29)
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where t is the temporal coordinate, σw and σv are the r.m.s of the vertical
and transversal velocity respectively, TLw and TLv represent the vertical and
transversal Lagrangian time scales and σ0 denotes the initial spread, that is
equal to the source diameter.

Two different parametrisation of the Lagrangian timescales, widely adopted
in the literature, have been tested. In the first case these are expressed as:

TLw =
2σ2

w

C0ε
(3.30)

TLv =
2σ2

v

C0ε
, (3.31)

where C0 is the Kolmogorov constant and ε is the dissipation rate of turbulent
kinetic energy. The best agreement between experimental and modeled plume
spreads is obtained for C0 = 4.5 (Figure 3.13). For the elevated source, the
model agrees well with experimental data. A satisfactory agreement is also
shown for σz in the ground level case, while σy is overestimated starting from
x/δ = 1.25. As shown in Paragraph 2.5.6, it is worth noting that, for this value
of C0, the Lagrangian time scales provided by Equations 3.30 and 3.31 are very
close to those computed as:

TLw1 ∼ Lww

σw
(3.32)

TLv1 ∼ Lvv

σy
, (3.33)

being Lvv and Lww a transversal and a vertical Eulerian Integral Length Scale,
respectively. Equation 3.33 is therefore shown to be a suitable and simple model
for the Langrangian time scale.

A second model for the estimation of the mean plume spread is obtained
through the assumption of similarity in the Lagrangian and Eulerian spectra
(Hay and Pasquill (1959), Tennekes (1982) and Fackrell and Robins (1982a)).
This is a classical model in which the spread of particles is related uniquely to
measurable statistics of the turbulence. In the y-direction the plume spread is
calculated as:

σ2
y = σ2

0 + (σ2
v/u2)x2

∫
∞

0

FE(k)

(
sin kx/2β

kx/2β

)2

dk, (3.34)

where k = 2πf/u is the wavenumber, f is the frequency and FE(k) = EE(k)/σ2
v

is the normalized Eulerian spectrum. In writing Equation 3.34, it is assumed
that Eulerian EE(k) and Lagrangian EL(k) spectra are related via:

EL(f) = βEE(βf), (3.35)

β being the ratio between Eulerian and Lagrangian scales (Equation 2.26). Sev-
eral experimental estimates of β are available and differ significantly one to the
other: β is expected to range from 2 − 3 to almost 12. Such a variability does
not support the request of finding a universal law valid for all turbulent flows.
According to Pasquill (1971), precise similarity in the Lagrangian and Eulerian
spectra cannot be supported, but experience shows that the crucial requirement
is to prescribe correctly the ratio of the integrals of the spectra, and then the
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departure from similarity in shape is likely to be relatively unimportant. β is
a function of the distance from the source and is calculated with the empirical
formulation β = αu/σv, with α = 0.6, as suggested by Fackrell and Robins
(1982a). This gives β = 7.33, which falls in the middle of the a typical range of
literature data.

The analogous of Equation 3.34 can be written for the vertical plume spread,
with the vertical FE(k) = EE(k)/σ2

w. To take into account the effect of the
source dimension, the source diameter σ0 is included:

σ2
z = σ2

0 + (σ2
w/u2)x2

∫
∞

0

FE(k)

(
sin kx/2β

kx/2β

)2

dk. (3.36)
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Figure 3.14: Comparison between experimental and modelled (Equations 3.34
and 3.36) plume spreads σz and σy downstream the source.

The comparison of this model with the experimental mean plume spreads is
shown in Figure 3.14. In computing the plumes spreads we used the velocity
spectra (Paragraph 2.5.3) that were measured at the vertical coordinate of the
plume centre of mass, considered at each different distances from the source. In
this case, spreads from the ground level source plume are correctly reproduced
by the model, that also gives a satisfactory agreement with the σz of the elevated
source.

Finally, the standard deviations σy and σz were compared to parametrisa-
tions (Weil (1985), Venkatram (1992), Deardroff and Willis (1975)) adopted
in several operational dispersion models, such as ADMS (CERC, 2001) and
SIRANE (Soulhac et al., 2011). In neutral atmospheric conditions and for an
elevated source, the transversal plume spread is given by:

σ2
y = σ2

0 +

[
σvt

(1 + 2.5(u∗t/δ)1/2

]
, (3.37)

where t = x/us, us being the mean velocity at the source elevation. The vertical
plume spread is given by:

σ2
z = σ2

0 + (0.4σwt)2. (3.38)

The comparison with experiments is reported in Figure 3.15. The agreement
is satisfactory for the vertical spread σz , while the modelled transversal spread
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Figure 3.15: Comparison between the experimental σz and σy and the ones
calculated by means of Equations 3.37 and 3.38, at every downstream position.

σy diverge substantially from experiments in the far field. From an analysis
of Equation 3.37 it can be shown that this formulation implicitly assumes a
Lagrangian time scale TLv = δ/(5u), that is about three times the actual time
scale, as estimated from experimental results (Paragraph 2.5.6). This difference
may be due to the fact that Equation 3.37 takes into account a transversal
plume spread due to meandering motion related to low-frequency fluctuations
in the atmosphere that is not present in the simulated wind tunnel flow.

In order to compare the plume spread to those measured by Fackrell and
Robins (1982b), we have also computed the plume half-widths δy and δz, defined
as the distance in which the maximum concentration falls to its half value. This
comparison is shown in Figure 3.16a for the elevated source and in Figure 3.16b
for the ground level source. All along, for the ES case, our plume resulted
slightly narrower in both the vertical and the transversal directions. Some more
discrepancies appear for the GLS in the far field, since our plume seems to grow
with a slower rate. However, the overall comparison is satisfying.

The variation of maximum mean concentration max(C) on the planes (y, z)
with downstream distance x is shown in Figure 3.16c for the elevated sources and
in Figure 3.16d for the ground-level source. Our results are once again compared
to Fackrell and Robins’s (1982b). For the ES, the maximum approaches the
ground, being at ground level only for the furthest downstream position. No
influence of the source diameter can be detected, with the exception of the
two nearer stations where there is a little scatter between the 3 mm and the
6 mm. Slight differences can be observed between our results and those of
Fackrell and Robins (1982b), whose maximal concentrations in the plume axis
are generally lower. These differences have to be attributed to the different ratio
u∗/U∞ characterising the two velocity fields (see Paragraph 2.4), that however
appear to have a limited influence on the mean concentration field. For the
GLS, the maximum mean concentration is situated at the ground level starting
from x/δ = 1.25. From this station on, our experimental data superpose with
Fackrell and Robins’s. Starting from x/δ = 1.25, the GLS maximum mean
concentration becomes bigger than the ES one.
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Figure 3.16: Vertical and lateral plume half-widths and maximum concentra-
tions, comparison with Fackrell and Robins (1982b) (F&R in the legends).
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3.5.4 The concentration standard deviation
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Figure 3.17: Development of the intensity of concentration fluctuations esti-
mated as σc(hc)/C(hc) (a) and as max(σc)/max(C) (b), and comparison with
Fackrell and Robins (1982b).

The non-dimensional concentration r.m.s, σ∗

c is calculated as:

σ∗

c =



 1

N

N∑

j=1

(c∗j − C∗)2




1/2

(3.39)

where c∗ is non-dimensional instantaneous concentration, C∗ is the non-
dimensional mean of the time-series and N is the number of samples in the
time-series.

Even if the mean field seems not to be influenced by the source dimensions,
the other statistics show instead strong source size dependence, and this depen-
dence extends to a considerable fetch.

The intensity of concentration fluctuations at the source level is defined as
the ratio σc(hs)/C(hs) between the concentration standard deviation and the
mean concentration evaluated at the source elevation (hs). Figure 3.17a shows
the downwind development of the intensity of concentration fluctuations, at
every downstream position. We observe that the maximum of the fluctuation
intensity occurs close to the source and thereafter the fluctuations decay. This
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is particularly true for the elevated source, for which the effects of source size
are larger. These effects are important close to the source, where the highest
fluctuations result from the small size emissions. The source size influence de-
creases while increasing the distance from the source: at the latest station the
curves seem to converge to a common far field behaviour. Since the ultimate
fate of an elevated source is to approach the ground, becoming more or less
indistinguishable from a ground level emission, it seems likely that the elevated
source results tend towards the ground level ones in the far field.

At the point downwind where the curves converge, the only mechanism re-
sponsible of the generation of concentration fluctuations is the relative disper-
sion. At this point, the plume size is bigger than the turbulence scales and
there is no meandering. Concentration fluctuations are generated by turbulent
structures with size equal to the integral length scales, therefore it makes sense
that the asymptotic value of σc(hs)/C(hs) is dependent on the integral length
scales.

The effects of source size on ground level emissions was investigated by Fack-
rell and Robins (1982a), according to whom the source size has no significant
influence(or if there is an influence it is not distinguishable from the experi-
mental scatter) and that details of source conditions and surface roughness are
relatively unimportant in determining the fluctuating concentration field down-
wind of ground level sources. They argue that ”it seems likely that the local flow
characteristics near the surface (high turbulence and high shear) and between
the three-dimensional roughness elements effectively ’scramble’ the concentration
field and thereby eliminate the possibility of significant history effects”. They
also show that the fluctuation intensity is always constant downwind a point
ground level emission. For what concerns our GLS measurements, the fluctua-
tion intensity is higher close to the source and reaches a constant value at the
last three stations downwind. This is due to the fact that our GLS was actu-
ally placed at z/δ = 0.0625 (Fackrell and Robins’s was at z/δ = 0), so that
the plume issued from this source behaves as a ground level starting from the
moment when it reaches the ground, at about x/δ = 2.5. Compared to the el-
evated emission, the ground level generates lower fluctuations. The fluctuation
intensity is generally smaller than the one measured for the elevated emission
with the same source size.

To compare our results with data from Fackrell and Robins (1982b), we
calculated the intensity of concentration fluctuations as they did, that is to say
as the ratio of the maximum r.m.s., max(σc), to the maximum mean, max(C),
at every downstream position. The comparison is shown in Figure 3.17b for
the ES case with source size d/δ = 0.0075 (3 mm). The two plumes behaves
similarly, even if our measurements reach the maximum closer to the source
and they generally show a lower intensity of fluctuations. We believe that these
differences could be attributed to the different structure of the flow reproduced
in the two experiments, especially for what concerns the lateral integral length
scales.

A very similar information about concentration fluctuations in the plume
can be recovered from the ratios m∗

3c(hs)/C(hs) and m∗

4c(hs)/C(hs), reported
in Figure 3.18. At growing distance from the emission point, their behaviour is
analogous to what we already discussed for σc(hs)/C(hs).

Transversal profiles of concentration standard deviation downwind the source
for the elevated sources are presented in Figure 3.19, while for the ground level
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Figure 3.19: Transversal profiles of non-dimensional concentration standard de-
viation for the elevate sources, at various distances downwind. Profiles were
measured at the source heigth, zs/δ = 0.19. Blue circles: source diameter 6
mm; red triangles: source diameter 3 mm.
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Figure 3.20: Transversal profiles of non-dimensional concentration standard de-
viation for the ground level source with diameter 3 mm, at various distances
downwind. Profiles were measured at the source heigth, zs/δ = 0.0625. A
comparison is made with the elevated source having the same diameter.
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source they are shown in Figure 3.20. Vertical profiles are reported in the An-
nexe 7.1. A strong dependence on the source size is visible near the source,
confirming that the small source generates the highest fluctuations. The gap
mitigates moving downwind, up to the last two stations where the profiles col-
lapse.

Source elevation also has a strong influence, as shown in Figure 3.20 where
ES and GLS are compared. The ES emission results in higher concentration
standard deviation, only at the latest station the profiles collapse. A difference
is observed also in the profiles shape. While the σ∗

c from ES emission always
have a Gaussian like form, the profiles for GLS depart from this is the far
field and exhibit off-centreline maxima. These off-centreline peaks are due to
a reduced meandering motion in the plume centre-line in the far field. This
phenomenon was also noticed by Yee and Wilson (2000), who argue that still
the exact quantitative conditions required for the emergence of off-centreline
peaks have not been elucidated.

3.5.5 Higher concentration moments

The non-dimensional third and fourth concentration moments are calculated as:

m∗

3c =



 1

N

N∑

j=1

(c∗j − C∗)3




1/3

(3.40)

m∗

4c =



 1

N

N∑

j=1

(c∗j − C∗)4




1/4

(3.41)

where c∗ is non-dimensional instantaneous concentration, C∗ is the non-
dimensional mean of the time-series and N is the number of samples in the
time-series.

Transversal profiles of the third and fourth moments of concentration down-
wind of the source are presented in Figure 3.21 for the elevated sources, while
for the ground level source they are shown in Figure 3.22. Vertical profiles are
reported in the Annexe 7.1. Third and fourth moments have a similar behaviour
for what concerns the influence of source size and source elevation. The first is
investigated by means of measurements on the ES, where a strong source-size
dependence is observed in the near field. As expected, the small source gener-
ates higher moments. It is remarkable how a tiny difference in the source size,
whose diameter was varied by a factor of 2 (from 3 to 6 mm), is reflected in
significant variations of higher order moments of the concentration fluctuations.
These appear to be more and more pronounced as the moment are increased
and persist up to a distance of about 3m, that is about 1000 times the source
diameter. Moving downwind the difference in concentration fluctuations dimin-
ishes (see Figure 3.18, where is shown the downwind evolution of the intensity
of concentration fluctuations) and consequently the profiles gradually approach
one to the other and finally collapse at the latest two stations.

The source elevation is even more determinant in the shape of the moments
profiles. While profiles from the ES emission have a Gaussian like shape, in
the GLS case the shape changes soon downwind. At x/δ = 1.25 a constant
zone is observed at the centre of the profile and afterwards the phenomenon of
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Figure 3.21: Transversal profiles of non-dimensional third moment of concentra-
tion. Elevated sources at various distances downwind. Profiles were measured
at the source heigth, zs/δ = 0.19. Blue circles: source diameter 6 mm; red
triangles: source diameter 3 mm.
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Figure 3.22: Transversal profiles of non-dimensional third moment of concen-
tration for the ground level source with diameter 3 mm, at various distances
downwind. Profiles were measured at the source heigth, zs/δ = 0.0625. A
comparison is made with the elevated source having the same diameter.
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Figure 3.23: Transversal profiles of non-dimensional fourt moment of concentra-
tion. Elevated sources at various distances downwind. Profiles were measured
at the source heigth, zs/δ = 0.19. Blue circles: source diameter 6 mm; red
triangles: source diameter 3 mm.
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Figure 3.24: Transversal profiles of non-dimensional fourt moment of concen-
tration for the ground level source with diameter 3 mm, at various distances
downwind. Profiles were measured at the source heigth, zs/δ = 0.0625. A
comparison is made with the elevated source having the same diameter.
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off-centreline peaks appears, starting from x/δ = 2.5. At the latest station, m∗

3c

is negative on the plume centre-line. The third moment is the most affected
by off-centreline peaks. However, their apparition is evidents also on m∗

4c. Fi-
nally we can note how the graphs for m∗

4c show generally more scatter in the
profiles compared to those of lower order moments. This is due to the increased
experimental error affecting our data as the order of the moments of the con-
centration PDF increases, mostly due to the undesired spikes registered in the
signals caused by aerosol sampling.

It was shown in Paragraph 3.5.1 that a one-parameter gamma distribution
well predicts the probability density function downwind elevated and ground
level sources. We now verify whether the third and fourth moments of the
gamma distribution are in agreement with our measurements. Provided the
parameter k, that specifies the gamma distribution and is defined as k = C2/σ2

c ,
the moments m∗

3cΓ and m∗

4cΓ are calculated as:

m∗

3cΓ =

(
2√
k

)1/3

σ2∗
c (3.42)

m∗

4cΓ =

(
6

k
+ 3

)1/4

σ2∗
c . (3.43)

In the near field ( x/δ = 0.3125), the moments of the gamma distribution
reproduce experimental data with a good precision. The differences between
source dimensions and elevation are respected and curves superpose for the
three source types. In the far field ( x/δ = 5), a little scatter is observed
between the gamma distribution and experiments. At the plume centreline, for
the ES case, m∗

3cΓ and m∗

4cΓ under-estimate the experiments, especially fourth
moments. As well as measured third and fourth moments, m∗

3cΓ and m∗

4cΓ

are not affected by the source size, but are sensible to the source elevation.
It is therefore possible to distinguish between moments due to ground level
and elevated emissions. For the GLS case, there is a general overestimation of
experimental data in the far field, that is particularly visible in the third moment.
The shape of m∗

3cΓ is close to the experimental one, and we observe the existence
of off-centreline peaks. These peaks are also present in the GLS fourth moment,
were the m∗

4cΓ overestimate experimental data. Also for the elevated sources,
m∗

3cΓ and m∗

4cΓ present small off-centreline peaks. These peaks however are not
clearly distinguishable in experimental data.

3.5.6 Relationships between higher moments of concentra-

tion

It was demonstrated by Chatwin and Sullivan (1990) that the same simple
relationship between the mean concentration C and the mean-square fluctuation
σc of a dispersing scalar exists for a wide range of turbulent shear flows, in
statistically self-similar and steady conditions. This relationship was at first
postulated for the dispersion of a scalar with concentration c in a turbulent shear
flow, in the hypothetical situation when there is no molecular diffusion. So that
in the convective diffusion equation (3.4), the coefficient of molecular diffusivity
D is equal to zero. This is a strictly theoretical flow, where concentration can
assume only two values: the release concentration cs and 0. Any dispersion
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Figure 3.25: Experimental profiles of non-dimensional third and fourth moments
in the transversal direction for the three sources (ES 6 mm, ES 3 mm, GLS),
compared to the moments of the gamma distribution from Equations 3.43.
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process would be characterized by a PDF of the form

p(c; xj , t) = π(xj , t)δ(c − cs) + (1 − π(xj , t))δ(c) (3.44)

where π is the probability of finding a marked fluid and δD(.) is the Dirac delta
function. Such a system can be described completely by its first two moments

C = πcs (3.45)

σ2
c = πc2

s(1 − π). (3.46)

With physical arguments, Chatwin and Sullivan (1990) extended Equation
3.46 to the real case, for a molecular diffusivity D > 0. Molecular diffusion acts
in two fundamental ways. The maximum concentration at a certain distance
downwind is less than the release concentration, and it diminishes by a factor
that increases with the distance. The concentration standard deviation is dissi-
pated according to the reduction of the maximum concentration and according
to the statistical properties of the velocity field. Two empirical parameters were
introduced in 3.46 to account for the effects of molecular diffusion, and the
second moment was written as:

σc = B C(A Cmax − C) (3.47)

where Cmax(x) denotes the maximum value of the mean concentration C at
each cross-section, and corresponds to the centerline mean concentration. A
and B are positive parameters, having a constant value. A considers that the
evolution of the contaminant distribution is controlled by the large eddies of
the velocity field, while B is essentially a measure of the amount of dissipation
accomplished by molecular diffusion.

Chatwin and Sullivan (1990) theory was extended for third and fourth mo-
ment of a diffusing scalar by Mole and Clarke (1995). They demonstrate that
there exists a quadratic relationship between the skewness (Sk) and the kurtosis
(Ku) obtained from continuous, elevated sources of scalar contaminant released
into both convective and stable atmospheric boundary layers.

Ku = aSk2 + b (3.48)

where skewness and kurtosis are defined as follows

Sk =
m∗

3c

σ∗3
c

; Ku =
m∗

4c

σ∗4
c

(3.49)

and a and b are empirically fitted constants that depend on the flow.
They noted that the relationship Ku = Sk2 + 1 can be used as a check of

whether the model is consistent with the data, as it represents the lower bound
of the general relationship. In fact, it is true for all probability distributions
that Ku ≥ Sk2 + 1. It is likely that all graphs of skewness against kurtosis will
lie on a parabola above this lower bound.

The existence of a relation between skewness and kurtosis is a potentially
useful information in regard to modelling the probability density function of
a diffusing scalar. With a knowledge of all moments, the PDF can be fully
reconstructed. The first three or four moments are enough to capture the bulk
characteristics of the PDF (Chatwin and Sullivan, 1990), however higher order



86 CHAPTER 3. THE CONCENTRATION FIELD

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

Skewness

K
ur

to
si

s

 

 

All Exp. points

Ku = a Sk2+b

Ku = Sk2+1

(a) All experimental points: a = 1.589, b =
2.509

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

Skewness

K
ur

to
si

s

 

 

ES 6 mm
ES 3 mm

Ku = a Sk2+b for ES

Ku = a Sk2+b for ES6

Ku = a Sk2+b for ES3

Ku = Sk2+1

(b) ES 6mm: a = 1.507, b = 2.791, ES 3mm:
a = 1.456, b = 8.074, All ES: a = 1.485, b =
4.975

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

Skewness

K
ur

to
si

s

 

 

ES
GLS

Ku = a Sk2+b for ES

Ku = a Sk2+b for GLS

Ku = Sk2+1

(c) GLS: a = 1.463, b = 5.132, All ES: a =
1.485, b = 4.975

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

Skewness

K
ur

to
si

s

 

 

ES iso
ES hypo

Ku = a Sk2+b for iso

Ku = a Sk2+b for hypo

Ku = Sk2+1

(d) ES iso: a = 1.352, b = 2.989, ES hypo:
a = 1.391, b = 7.375

Figure 3.26: Kurtosis Ku against Skewness Sk. Equation Ku = aSk2 + b is
fitted to experimental measurements using a least squares best fit. Dashed blue
line is the theoretical lower bound, Ku = Sk2 + 1.
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moments are required to retrieve more subtle features. If one intends to model
the PDF by inverting a limited number of moments, the task is reduced when
there is a functional relationship between the standardized third and fourth
moments.

From one flow to another, there appears to be a non-negligible variability
in the a and b coefficients. Using field data from a continuous elevated source
in both convective and stratified conditions in the atmospheric boundary layer,
Mole and Clarke (1995) determined the fitted constants to be a = 1.31 and
b = 0.77. Lewis et al. (1997) used field measurements in stability conditions
and continuous releases to determine the fitted constants to be a = 4/3 and
b = 3. Schopflocher and Sullivan (2005) attempted to predict how a and b vary in
space and time, using wind tunnel experiments where the source of contaminant
consisted in a heated wire producing a line source of heat. They found that the
fitting parameters generally increase while proceeding downstream. Parameter
a is about 1.14 near the source and than levels off at 1.43. Parameter b have
less variation and ranges from 1.82 to 2.22.

We attempted to predict whether the source dimension, elevation and emis-
sion velocity have some influence on the relation between skewness and kurtosis.
To estimate a and b, we fitted Equation 3.48 on our experimental measurements
with least squares best fit. All experimental points where the signal-to-noise
ratio was not satisfactory, especially those at the plume borders, were excluded
from the analysis. From our data, we are not able to clearly identify the influ-
ence of the source size on the parameters a and b ( Figure 3.26b), as the fits
superpose for the cases ES 3 mm, ES 6 mm and ES (obtained with a fit on all
elevated source measurements, without size diversification). The regression of
Equation 3.48 on GLS and ES measurements returns close values of the couple
a and b, as shown in Figure 3.26c. A small difference is observed between the
fitting on isokinetic and hypokinetic ES measurements in the near field (Fig-
ure 3.26d), however no significant pattern can be deduced from the data. In
conclusion, a ranges from 1.35 to 1.59 and b, which has more variability, ranges
from 2.5 to 8. If all experimental points are best-fitted at once, without any
diversification, a is equal to 1.58 and b is 2.51 (Figure 3.26a).

3.5.7 Influence of the source conditions

In most of the studies on passive scalar dispersion in a TBL, it is implicitly as-
sumed that the particles emitted at the source instantaneously take the statistics
of the external velocity field, so that there is no difference between Lagrangian
statistics of the fluid particles injected at the source and those in the ambient
fluid passing close to it. In order to reproduce experimentally this condition,
two precautions are taken to minimise the effects of the source in the dispersion
process. First of all, the source has to be chosen so that its interaction with the
velocity field, i.e. its wake, is minimised. Secondly, the tracer should be emitted
horizontally and in isokinetic conditions, so that the outlet velocity should equal
the average velocity of the flow over its height.

It is generally assumed that with isokinetic conditions, the mean concen-
tration field is not influenced by the source dimensions and that profiles from
different source sizes collapse, for both ground level and elevated sources. This
was not the case for our elevated source measurements. As shown in Figure 3.8,
at the first station downwind (x/δ = 0.3125), the mean concentration from the
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6mm source was 30% greater than the 3mm one. This disparity reduces moving
downwind and disappears for x/δ = 2.5.

The ideal source conditions implies zero momentum deficit, zero density
deficit and uniform velocity distribution. Departures from ideal conditions were
studied by Fackrell and Robins (1982a), and were analysed in terms of difference
between the real source diameter and a source flux diameter. They estimated
a 10% difference between real and source flux diameter for profiles measured at
distances starting from x/δ = 0.83.

In our case, we estimated that the emission has no density deficit because
the emitted gas is considerably diluted (from 0.01 % to 3.75% of ethane in air)
and has the same temperature of ambient air. To diminish the walls friction,
our sources were made by a metallic tube smoothed on the inside. Nevertheless,
the condition of uniform velocity at the source is difficult to attain.

Since most of the concentration fluctuations are produced very close to the
source (Paragraph 3.5.4), the investigation of the effect of the emission condition
on the concentration field is a problem that deserves to be deeply analysed.
In order to clarify this feature we focus here on the modification induced by
the presence of the source on the velocity field and on the influence of the
emission conditions on the concentration statistics by comparing isokinetic and
hypokinetic emissions (in hypokinetic conditions the outlet velocity is slower
than the velocity field at the same height: us = 0.03us, being us the source
outlet velocity and us the field mean velocity at the stack height).

We begin by analysing the perturbation of the velocity field induced by the
physical presence of the source. To this purpose we measured the extension of
the source wake depending on the gas emission conditions. A different analy-
sis was carried out for each of the two elevated sources. For the small 3 mm
source, our purpose was to understand how far the velocity field was altered by
the presence of the source. Therefore, we measured, with hot wire anemometry,
streamwise and vertical velocity profiles at the source elevation in two cases:
with and without the source. No flow was emitted from the source. Profiles
of the mean streamwise velocity u/U∞ are shown in Figure 3.27. The source
generates a region of velocity deficit that is likely to have non negligible conse-
quences on the tracer dispersion. The logarithmic profile in the proximity of the
source (at x/δ = 0.025, corresponding to 6 times the source diameter) is highly
perturbed. A velocity deficit region is clearly distinguishable, where u reaches
a value of - 20% compared to the undisturbed velocity at the same height. At a
distance x/δ = 0.4 - corresponding to more than 100 times the source diameter
- the flow is still slower than in undisturbed conditions.

A second analysis was carried out to highlight the influence of the gas emis-
sion velocity. We chose to use the big 6 mm source because, as already pointed
out, this is the one that mostly affects the outlet conditions. We measured
streamwise and vertical profiles of mean velocity in two cases: at first without
any emission so that us = 0, and on a second time with an outlet velocity cor-
responding to hypokinetic conditions (that is to say that the ratio us/us = 1).
Measurements were carried out by means of a hot wire anemometer with a sim-
ple one-wire probe. The streamwise profile of u/U∞ is shown in Figure 3.28 and
vertical profiles are reported in Figure 3.29, for four distances from the source.

The 6 mm source generates a velocity defect region that extends for a long
fetch downwind. Close to the source, at x/δ = 0.045 (corresponding to 6 times
the source diameter d) the mean velocity u is diminished of about 60% with
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Figure 3.27: Study of the influence of the source on the mean velocity field,
source 3 mm. Comparison of streamwise and vertical profiles of mean velocity
measured at the elevation of the emission point, in the presence of the source
(not emitting) and in the undisturbed field without the source. The source is
placed at x/δ = 0.

respect to the undisturbed field. Moving from the source, the influence of the
source slowly fades until the logarithmic profiles recovers its original shape, at
x/δ = 3.75, corresponding to 500 times the source diameter. The 6 mm source
modifies substantially the velocity field and its influence on u is stronger and
more persistent in time, compared to the 3 mm.

When the source is emitting, a clearly detectable jet effect appears. This
effect can be observed on the profiles measured at x/δ = 0.045 and x/δ = 0.225,
where the mean velocity us on the source centreline is higher than the flow
due to the jet effect, while is lower on the source borders due to the velocity
defect generated by the wake. At x/δ = 0.45 (60 times d), the jet effect is
almost disappears but the source wake is still clearly visible. As shown by the
streamwise profile, the effect of the emission velocity persists up to about 130
times d (x/δ = 1).
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Figure 3.28: Streamwise profile of mean velocity at the source elevation, source
6 mm. Comparison between the case with no emission (us = 0) and the case of
isokinetic emission (us/us = 1). The source is placed at x/δ = 0.
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Figure 3.29: Study of the influence of the emission velocity on the mean velocity
field, source 6 mm. Comparison between the case with no emission (us = 0) and
the case of isokinetic emission (us/us = 1). The source is placed at x/δ = 0.

We now focus on the concentration field, by comparing the isokinetic condi-
tions us/us = 1 and the hypokinetic conditions us/us = 0.03, that approximate
the condition us/us → 0. Concentration profiles were measured close to the
source, at the stations x/δ = 0.3125 and x/δ = 0.625. In Figure 3.30 the mea-
sured hypokinetic transversal profiles of mean concentration are compared to
the respective isokinetics.

For both sources, the hypokinetic profiles have smaller concentration than
the isokinetics. The difference between mean concentration profiles with differ-
ent source diameter is considerably reduced at the first station in the hypokinetic
case, while at the second station downwind hypokinetic profiles collapse. While
profiles from the small 3mm source only showed a small reduction passing from
iso to hypo conditions, major changes occurred in profiles from the 6mm source,
showing that the influence of the emission velocity increases with the source
dimensions.

The influence of the emission velocity on the moments of concentrations is
showed in Figure 3.31, where r.m.s, third and fourth moments are compared.
The standard deviation confirms what was observed for the mean. Firstly, the
impact of the momentum deficit is more important close to the source. Secondly,
the bigger is the source size, the higher is the influence of the emission velocity.
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Figure 3.30: Transversal profiles of non-dimensional mean concentration for the
elevated sources, comparison between isokinetic and hypokinetic conditions.

While the r.m.s. of the 3 mm source diminishes slightly in the hypokinetic case,
the 6 mm one shows a strong reduction. The influence of the outlet velocity is
weaker on higher moments (m∗

3c and m∗

4c), whose profiles are still different in
the iso- and hypokinetic emissions but the discrepancies are mitigated.

It worth noting that it is not possible to distinguish which of the two con-
ditions (isokinetic or hypokinetic) induce a concentration field that is closer to
the one generated by an ideal source without any wake effect and with particle
statistics identical to that of the surrounding flow. To clarify this point it should
be necessary to simulate both conditions with a CFD code or with a Lagrangian
stochastic model.

3.5.8 Intermittency factor

To further inquire the influence of the source condition, we have focused on the
intermittency of the concentration signals. The intermittency factor γc is defined
as the percentage of time for which the plume is experienced at a given point. It
can be calculated from measured concentration probability distributions, P(c),
since:

γc =

∫ 1

0

P (c) dc. (3.50)

If Γc(x, t) is a random variable describing the concentration at position x

and time t, the intermittency factor can also be calculated as:

γc(x, t) = prob(Γc(x, t) > 0). (3.51)

A reliable determination of the intermittency depends on the fine scale structure
of turbulence, whose temporal and spatial resolution is invariably accompanied
by random noise. Due to the noise, zero concentrations can not be measured and
a small threshold value of concentration (Γt) is fixed, under which we suppose
that the plume is not experienced by the probe. γc is obtained with the following
equation:

γc(x, t) = prob(Γc(x, t) > Γt). (3.52)



92 CHAPTER 3. THE CONCENTRATION FIELD

0 200 400 600 800 1000 1200 1400
−0.1

−0.05

0

0.05

0.1

σ
c
* = σ

c
/∆ c

y/
δ

 

 

ES 6 mm iso
ES 3 mm iso
ES 6 mm hypo
ES 3 mm hypo

(a) σ∗c at x/δ = 0.3125

0 100 200 300 400
−0.2

−0.1

0

0.1

0.2

σ
c
* = σ

c
/∆ c

y/
δ

 

 

(b) σ∗c at x/δ = 0.625

0 500 1000 1500 2000 2500
−0.1

−0.05

0

0.05

0.1

m
3c*

 = m
3c

/∆ c

y/
δ

 

 

(c) m∗

3c at x/δ = 0.3125

0 200 400 600 800
−0.2

−0.1

0

0.1

0.2

m
3c*

 = m
3c

/∆ c

y/
δ

 

 

(d) m∗

3c at x/δ = 0.625

0 500 1000 1500 2000 2500 3000 3500
−0.1

−0.05

0

0.05

0.1

m
4c*

 = m
4c

/∆ c

y/
δ

 

 

(e) m∗

4c at x/δ = 0.3125

0 200 400 600 800 1000 1200
−0.2

−0.1

0

0.1

0.2

m
4c*

 = m
4c

/∆ c

y/
δ

 

 

(f) m∗

4c at x/δ = 0.625

Figure 3.31: Transversal profiles of non-dimensional r.m.s, third moment and
fourth moment for the elevated sources. A comparison is made between isoki-
netic and hypokinetic conditions.
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The choice of the threshold inevitably involves some arbitrariness, and the cal-
culated values of γc are strongly dependent on it. This lead to the practical
conclusion that a quantitative interpretation of the published data is not possi-
ble unless they are accompanied by the corresponding value of Γt (Chatwin and
Sullivan, 1989). The variation of the intermittency factor with Γt was investi-
gated at three distances downwind (Figure 3.32a). γc decreases with increasing
the threshold. The trend is different in the three cases: the sharpest fall is ex-
perienced close to the source, while in the far field the decrease is more gradual.
As the need of choosing a threshold is due to the measurement errors inevitably
affecting the zero concentration values, we believe that Γt should be a small
constant value, not depending on the downwind distance. For all stations, Γt

was fixed equal to 1, in non-dimensional form. This threshold allows an efficient
separation between the moments when the plume is experienced by the probe
and the moments of zero concentration.

Profiles of intermittency factor are calculated for the elevated sources (diam-
eters 3 mm and 6 mm) and for the ground level source (Figure 3.32b). Intermit-
tency decreases with downwind distance for all source configurations. Elevated
sources behave in a very similar way and no influence of the source size can be
distinguished, apart for the first two stations where the smaller source is slightly
more intermittent. At the furthest downstream position intermittency tends to
unity, meaning that the plume is more mixed. The ground level emission is less
intermittent than the elevated ones and reaches unity at x/δ = 1.25.

The gas emission velocity at the source have an important influence on the
intermittency. In Figure 3.32c is shown a comparison between γc calculated
for the isokinetic and hypokinetic emissions, at the first two stations downwind.
In the isokinetic case, γc is closer to unity, meaning that the plume is less
intermittent. If the tracer is released hypokinetically, no jet effect is produced
and the plume is immediately transported by the velocity field, resulting in a
smaller intermittency factor. As it was already observed in Paragraph 3.5.7, the
bigger is the source, the bigger is the influence of the emission velocity on the
concentration field.

It can be noted that, independently on the source configuration, the inter-
mittency approaches unity when the plumes reach the ground level and are
efficiently mixed by the small scale surface generated turbulence, that acts by
suppressing concentration fluctuations.

3.5.9 Spectra of concentration fluctuations

In order to analyse how source size and height affect the distribution of the
variance of concentration over different length scales we turn to concentration
spectra.

Spectra of concentration fluctuations measured on the center line at var-
ious distances from the source are given in Figure 3.33, where spectra from
elevated sources and from the ground level source are compared. E(k) is the
one-dimensional wavenumber spectrum, with wavenumber k = 2πf/u, u being
the local flow speed. The −5/3 region corresponding to the inertial subrange is
present, even if with a limited extension, especially in the near field.

The influence of the source size is clearly visible in the near field. Spectra
from the small elevated source (diameter = 3 mm) result greater than the ones
obtained for the big elevated source (diameter = 6 mm). This difference can
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Figure 3.32: Intermittency factor
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Figure 3.33: Spectra of concentration fluctuations on the plume center line, at
a growing distance from the source. Comparison between the spectra from the
elevated sources with 3 mm and 6 mm diameter (measured at z/δ = 0.19) and
the ground level source (measured at z/δ = 0.0625).
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be interpreted in the light of the meandering scheme. Near the source, concen-
tration fluctuations are mostly due to the plume meandering back and forth:
a movement generating a highly intermittent signal when measured by a fixed
probe. Eddies in the flow are bigger than the plume size and are able to shift
the plume as a whole. This meandering motion occurs at small wavenumbers,
corresponding to big length scales in the plume, and it is at this point that the
difference between 3 and 6 mm spectra is more evident, with the small 3 mm
source generating a plume with a marked meandering. At elevated wavenum-
bers, or fine length scales, relative diffusion is predominant and no significant
difference is observed between the two source sizes. Figure 3.33 also clearly
show the effect of varying height on plumes emitted by d = 3mm sources. The
large scale fluctuations in the GLS are significantly reduced compared to the ES,
since the plume is submitted to the dispersive action of smaller eddies than those
experienced by the ES. Even in this case, the meandering scheme provide ful-
filling explication for the differences observed in spectra. It is also worth noting
how the smaller scale fluctuations appear to be more intense in the centre line
of the GLS plume, which is much more sensitive to the small scale turbulence
generated close to the wall.

In the far field, the plume has developed and its dimension is comparable to
the bigger structures in the flow. In these conditions, the meandering motion
is almost inexistent and relative diffusion is the phenomena governing plume
dispersion. Concentration spectra far from the source superpose, irrespective
of the source size and of the wavenumber. Concentration fluctuations however
still show a significant dependence with the distance from the wall. The con-
centration spectra registered at the GLS plume centreline still shows a reduced
contribution of large scale fluctuations and a most prominent role of the smaller
eddies in the inertial range.
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Figure 3.34: Influence of the source emission velocity on spectra of concentra-
tion fluctuations. Comparison between isokinetic and hypokinetic conditions
for spectra measured on the plume center line, at x/δ = 0.3125.

Figure 3.34 shows spectra from different emission velocities at the source.
The difference between isokinetic and hypokinetic conditions is evident and
confirms that fluctuations are enhanced in the isokinetic case. This difference
appears for both source sizes but is more evident for the bigger source.



3.5. RESULTS 97

3.5.10 Dissipation and production of concentration fluctu-

ations

Considering diffusive transfer as negligible, due to the high Re number, and
transversal and vertical mean flow component equal to zero, the balance equa-
tion of the concentration variance reduces to:

U
∂c2

∂xj
+ 2P +

∂u′c2

∂xj
+ 2εc = 0 (3.53)

where the first term represents the mean advection and the third term represents
turbulent diffusion, and where

P = u′

jc
′
∂C

∂xj
(3.54)

is the production term and εc is the rate of dissipation at which molecular
diffusion dissipates scalar fluctuations by acting on local scalar gradients, defined
as:

εc = D

(
∂c′

∂xj

∂c′

∂xj

)
. (3.55)

Our experimental data do not allow us to properly evaluate the different
terms of Equation 3.53. The estimate of the mean advection term would require
a finer spatial resolution to compute the variance gradients, we do not dispose of
any simultaneous measurement of velocity and concentration to compute their
correlations, and finally the frequency response of the FID (≃ 350Hz) is too
coarse to sample the fluctuations in the small dissipative scales.

However, in order to shed light on the mechanisms controlling the dispersion
phenomenon, we can deduce estimates of the production and dissipation terms
at varying distances from the source. Following Fackrell and Robins (1982b),
we deduced εc from the measured spectra of concentration E(k), to which is
related by means of the following equation derived from a universal relationship
for the inertial subrange:

E(k) = const. × 2εcε
−1

3 k−
5
3 , (3.56)

where ε is the rate of dissipation of the velocity fluctuations and k is the
wavenumber. Even though the −5/3 slope inertial region in the concentra-
tion spectra is narrow compared to velocity spectra, this estimate was proven
to be quite accurate compared to estimates of εc obtained as residual of the
Equation 3.53 (Fackrell and Robins, 1982a). Nevertheless, quite accurate here
means affected by errors that can easily attain ±25%.

Since we do not dispose of experimental values of the correlation term u′

jc
′,

in order to estimate the production term we adopt a simple gradient closure
model, so that:

P ≃ v′c′
∂C

∂y
+ w′c′

∂C

∂z
≃ (3.57)

≃ Dty

(
∂C

∂y

)2

+ Dtz

(
∂C

∂z

)2

, (3.58)
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Figure 3.35: Vertical profiles of the non dimensional dissipation of concentration
fluctuations εcσz/(u∗∆c2) at a growing distance from the source. Comparison
between the elevated sources with 3 mm and 6 mm diameter.

where the turbulent diffusivities, by definition, are expressed as a function of
the plume spreads: Dty(x) = 2σyU/x and Dtz(x) = 2σzU/x.

Vertical profiles of the variance production and dissipation (in non-
dimensional form) are shown in Figure 3.35, for two distances from the source:
x/δ = 0.3125 and x/δ = 5. The dissipation is non-dimensionalised as
εcσz/(u∗∆

2
c). In the near field, the dissipation rate is higher for the small 3

mm source, while no significant differences are observed in the far field. At
both locations, the production term for the two cases is almost the same, since
the mean concentration field is almost not affected by the varying source size,
and significantly lower than the dissipation term. This means that the higher
σ∗

c registered for the d = 3 mm source (compared to the d = 6 mm one) has to
be attributed to an enhanced production occurring over a distance lower than
x/δ = 5. As already enlightend by Fackrell and Robins (1982a), this shows the
importance of focusing on the influence of varying emission conditions at the
source, since most of the fluctuation production occurs very close to it.

It is usually assumed that the dissipation rate is intimately related to the
phenomena of relative dispersion (Sawford and Hunt, 1986). We could then
expect that higher εc are associated to more intense relative fluctuations, there-
fore concluding that relative dispersion in the near field is higher in the case
of the smaller source (Figure 3.35). However, this conclusion contradicts what
we could argue interpreting the results in the framework of Gifford’s model
(Equation 3.16). Since the plume spread σz is identical for the two sources (as
shown in Figure 3.13a), and the meandering movement is predominant in the
near field, we would expect that the small 3 mm source should have smaller
relative dispersion. Our measurements therefore show that we can not identify
a one-to-one relation between εc and relative dispersion, and that the intensity
of εc is due to local concentration gradients produced not only by small scale
fluctuations related to relative dispersion, but also on larger scale fluctuations
induced by the plume meandering.

To further investigate the relation between the dissipation rate and the phe-
nomena of relative dispersion we verified the reliability of a model proposed by
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(Sawford and Hunt, 1986), which relates εc to the scales of motion in homoge-
neous turbulence, using similarity scaling arguments:

εc = σ2
cσw/Lww(z), (3.59)

where Lww(z) is the integral length scale of the w-component of velocity in the
vertical direction, and which represents large-scale properties of the turbulence.
However, another length scale is imposed on the concentration field by the plume
extension σz , that is close to the source diameter in the near field and grows mov-
ing downwind. Then the scale ratio σz/Lww(z) influences the evolution of the
scalar field. The scaling Equation 3.59 applies when σz/Lww(z) ∼ 1 or greater,
so that relative dispersion is the only mechanism acting on the plume. In the
far field (x/δ = 5), σz ∼ 0.15 m and Lww(z) ∼ 0.056 m (at the source elevation)
and we are in the case of Equation 3.59, while in the near field (x/δ = 0.3125),
σz ∼ 0.01 m and is smaller than the integral length scale. Experimental profiles
are compared to the scaling Equation 3.59 in Figure 3.36. The scaling equation
provides a value of εc that is of the same order of magnitude of the experiments.
In the near field, experimental profiles are well reproduced by a factor of two.
In the far field, instead, the difference between model and experiments is bigger
and the model do not predict the exact shape of experimental profiles, due to
the anisotropy of the velocity field.
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Figure 3.36: Dissipation εc at a growing distance from the source. Comparison
with Equation 3.59
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Part II

MODELLING
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Chapter 4

MEANDERING PLUME

MODELS

4.1 ABSTRACT

The reliability of meandering plume models was analysed by means of compar-
isons with our experimental measurements of a fluctuating plume dispersing in
the turbulent boundary layer. Firstly, a simple two-dimensional plume model
is implemented following the one proposed by Yee et al. (1994), to analyse
the evolution of the model parameters M and λ. Than, to take into account
the anisotropy and inhomogeneity of the concentration field in the TBL, the
meandering model is extended to three dimensions. A focus is made on the
modelisation of relative dispersion, by analysing the dependence of the model
on the relative fluctuation intensity, icr, and on the plume spreads σy and σz .

4.2 INTRO

Fluctuating plume dispersion models are designed to predict the turbulent dis-
persion of continuous sources and to estimate the concentration statistics. The
basic idea is to split the total plume dispersion into two independent compo-
nents: meandering and relative dispersion. The first mechanism describes the
fluctuation of the plume centre of mass, whereas the spreading concerns the
relative dispersion of a plume element around its centre of mass. Meandering
models were firstly formulated by Gifford (1959), who introduced the practice of
partitioning concentration variability in a dispersing plume and who associated
each mechanism with a characteristic length scale that is well-separated from the
other. With this assumption, the absolute concentration PDF can be written
as the convolution of the PDF of concentration pcr in the meandering reference
scheme (ym, zm) and the PDF of the location of the cloud instantaneous cen-
troid pm, characterizing the large scale random crosswind displacements of the
mass centre:

p(c; x, y, z) =

∫
∞

−∞

∫
∞

−∞

pcr(c; x, y, z, ym, zm) pm(x, ym, zm)dymdzm, (4.1)
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where c is the instantaneous concentration and p its PDF. Once that p is known,
the moments of concentration can be computed as:

cn(x, y, z) =

∫
∞

0

cnp(c; x, y, z)dc. (4.2)

The model derived by Gifford is isotropic and two-dimensional. It requires
the homogeneity of the turbulence and internal concentration fluctuations are
neglected, so that the PDF pcr is parametrised by the Dirac delta function δD:

pcr(c; x, y, z, ym, zm) = δD (c − cr(x, y, z, ym, zm)) . (4.3)

This last hypothesis leads to the Gaussian distribution for the centroid po-
sitions and for the material distribution around the centre of mass. The hy-
pothesis of neglecting internal concentration fluctuations is acceptable close to
the source, where meandering is the main mechanism generating fluctuations,
but it becomes unrealistic in the far field where the influence of meandering is
significantly reduced.

Gifford’s model was applied by Fackrell and Robins (1982a) to the study of
concentration fluctuations downwind continuous point sources of different diam-
eters. They measured the relative intensity of fluctuations at growing distances
from the source and, by a suitable estimate of the dispersion coefficients, they
evaluated the influence of the source size on the results.

Gifford’s conceptual framework have been revised and generalised by many
other authors. Sawford and Stapountzis (1986) extended the model to an
anisotropic two-dimensional case. Yee et al. (Yee et al. (1994), Yee and Wilson
(2000)) introduced the relative in-plume fluctuations in the model. They pro-
posed a homogeneous model requiring two parameters, the fluctuation intensity
and the meander ratio depending on the distribution of the plume centroid posi-
tions. To include the effects of relative diffusion due to small-scale fluctuations,
a parametrisation for pcr was proposed by several authors (Yee et al. (1994), Yee
and Wilson (2000), Luhar et al. (2000)) that introduces a gamma distribution
with the following form:

pcr(c; x, y, z, ym, zm) =
λλ

crΓ(λ)

(
c

cr

)λ−1

exp

(
−λc

cr

)
, (4.4)

where Γ(λ) is the gamma function and λ = 1/i2cr, icr = σcr/cr is the intensity of
the relative concentration fluctuations (σcr is the standard deviation of relative
concentration). The moments of the relative concentration assume the following
shape:

cn
r =

1

λn

Γ(n + λ)

Γ(λ)
cn
r , (4.5)

with cr is given by:

cr =
Mq

2πσ2
ru

exp

[(
(y − ym)2

2σ2
r

)
+

(
(z − zm)2

2σ2
r

)]
, (4.6)

where Mq is the source mass flow rate and u is the centroid mean velocity,
assumed constant throughout the boundary layer height.

Another improvement in the model consists in taking into account the in-
homogeneity of the turbulent velocity field in the vertical direction. Several
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authors (Reynolds (2000), Luhar et al. (2000), Franzese (2003)) proposed to
evaluate the plume centroid distribution by simulating the trajectories of puff
centre of mass by means of a Lagrangian stochastic model. To separate the tur-
bulent kinetic energy involved in the displacement of the plume centroid, they
define a filter that is function of the relative plume spread.

In what follows, our aim is two folds. Firstly, we analyse the reliability of
a two-dimensional model in order to predict concentrations at ground level and
source height and to analyse the evolution of the model parameters. Secondly,
we extend the model from Yee and Wilson (2000) to take into account the
anisotropy and inhomogeneity of the concentration field.

4.3 MEANDERING PLUME MODEL 2D

The fluctuating plume model formulation presented here follows the one pro-
posed by Yee et al. (1994) and Yee and Wilson (2000). The first is a two dimen-
sional model and has been used for predictions in a boundary layer in neutral
conditions, for a fixed distance from the ground. The second has a slightly
different formulation and applies to isotropic dispersion. It was validated for
dispersion in grid generated turbulence.

The functional form of the two PDFs, pcr and pm, have to be defined a
priori. It is generally assumed that pm is well approximated by a Gaussian
distribution, considering that the plume meandering takes place only in the
horizontal direction we have:

pm(x, ym) =
1√

2πσym(x)
exp

(
− y2

2σ2
ym(x)

)
, (4.7)

where σym(x) is the standard deviation (spread) in the y-direction of the plume
centroid position.

The functional form of pcr differs according to the authors: log-normal dis-
tribution (Csanady, 1973), exponential distribution (Sawford and Stapountzis,
1986), a combination of exponential and generalized Pareto distribution (Lewis
and Chatwin, 1995), clipped Gaussian distribution (Lewellen and Sykes (1986),
Mylne and Mason (1991), Luhar et al. (2000)). Following Yee et al. (1994) and
Yee and Wilson (2000), we assume here a Gamma distribution:

pcr(c; x, y, z, ym, zm) =
λλ

crΓ(λ)

(
c

cr

)λ−1

exp

(
−λc

cr

)
, (4.8)

where cr denotes the mean concentration on a transverse plane of the dispersing
plume, measured relative to the centroid location at a downwind distance x. cr

is assumed to be Gaussian with standard deviation σyr(x) :

cr = cr0(x)exp

(
− y2

2σ2
yr(x)

)
, (4.9)

being cr0(x) the centreline value.
The parameter λ is equal to the inverse of the fluctuation intensity in relative

coordinates: λ = 1/i2cr, with icr = σcr/cr. It is assumed that λ depends on x
only. As a consequence λ is constant in the transverse planes, meaning that we
are assuming isotropy along the y-direction.
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Resolving Equation 4.1 assuming Eqs. 4.7, 4.8, 4.9 for the functional form of
pm and pcr leads to an analytical expressions for the concentration PDF p(c; x, y)
and therefore to the concentration shape parameters, namely, the fluctuation

intensity i2 ≡ c′2/c, the skewness S ≡ c′3/c′2
3/2

and the kurtosis Ku ≡ c′4/c′2
2
,

where c′ is the fluctuating concentration. All these quantities are dependent
on two parameters, which admit a physical interpretation. The first one is
the meandering ratio M = σ2

ym/σ2
yr, defined as the ratio between the plume

meander variance and the instantaneous plume width variance, which is related
to the larger scale fluctuations. The second is the previously defined λ = 1/i2cr,
which is related to the effects of the smaller scale fluctuations. In both models
proposed by Yee et al. (1994) and Yee and Wilson (2000), these parameters are
assumed to be dependent on the distance from the source only, which implies
constant values along the y and z axes.

4.3.1 Results

The model parameters M and λ have been computed by means of the experi-
mentally measured concentration statistics. The meandering ratio M is related
to the spread σny of the spatial distribution of the n-th moment of the concentra-
tion PDF (for n=2,3,4) and to the lateral spread σy of the mean concentration,
by means of the relation (Yee and Wilson, 2000; Yee et al., 1994):

M =
1 − nRn

n(Rn − 1)
, where Rn =

σ2
ny

σ2
y

. (4.10)

The values of σny and σy are inferred by fitting a Gaussian law to the measured
crosswind profiles of concentration moments about zero, for n = 2, 3, 4. The
parameter λ is chosen so that the modelled value of the fluctuation intensity i2

(Equation 4.11) matches the measured one at the mean-plume centreline (with
c/c0 = 1, where c is the mean concentration and c0 is its centreline value):

i2 =
λ + 1

λ

1 + M√
1 + 2M

c

c0

−
2M

1+2M

− 1. (4.11)

We analyse the stream-wise evolution of the model parameters focusing on
M2 and λ2, which are computed for n = 2, on the plume centreline and at
a fixed distance z from the ground corresponding to the source elevation. The
variability of λ with n is of the order of 2% at every downwind position, therefore
we can retain that λ is independent of n. M is independent of n starting from
x/δ = 2.5, where its variability as about 2%. Close to the source the variability
of Mn is much greather (about 50%), probably due to the increasing uncertainty
affecting the measurement of third and fourth moments in the near field. Since
M2 and λ2 are the most reliable parameters, we decided to use them in the
model.

This simple 2D model allows us to enlighten the dynamical behaviour of
the plumes. In the ES case, the meandering ratio M2 increases rapidly moving
away from the source, attains a peak and then decreases asymptotically to zero
(Figure 4.1a). The intensity of this large scale motion, as expected, is higher for
the 3 mm source than for the 6 mm source. Meandering motion is inhibited in
the case of the GLS.
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Figure 4.1: Stream-wise evolution of the model parameters M2 and λ2, inferred
from profiles of concentration variance (for n = 2).

The evolution of λ2 for the three sources has a similar trend, increasing
monotonically moving away from the source (Figure 4.1b). For the ES case,
relative dispersion is only slightly affected by the source size. Conversely, the
source elevation has a major effect in reducing drastically the intensity of relative
fluctuation and therefore producing values of λ2 in GLS that are significantly
larger than those observed for the ES sources.

Vertical variation of model parameters and comparison with experi-

mental results

Our aim is to verify the reliability of the model for predictions in boundary
layer flows which may be useful for operational purposes. To do so, we check
the hypothesis of constant M and λ in the vertical direction and we compare
the model prediction with experimental results at the source height for vary-
ing distances downwind. The analysis focuses on the case of the ground level
emission.

The results, which are shown in Figure 4.2, indicate that the trend in the
z-direction, for both M and λ, is far from being constant. Furthermore, the
variability in the z-direction for each parameter depends on the downwind po-
sition. M grows faster close to the source compared to the slower increase of
its z-profile measured at a distance of x/δ = 2.5. λ, instead, slightly decreases
at x/δ = 0.625 and shows a drop at x/δ = 2.5. This first analysis shows
that the model parameters vary significantly with the distance from the ground,
and that this dependence changes with increasing stream-wise distances. This
feature makes difficult the adoption of simple functions defined empirically to
model this dependence.

The model from Yee et al. (1994) was adopted and the model predictions are
compared with measured crosswind profiles of fluctuation intensity, skewness
and kurtosis (Figures 4.3a,4.3b,4.3c) for the case of the ground level source.
In these comparisons we consider only concentration profiles measured at the
source height (z/δ = 0.0625). In doing that, we will adopt the values of M
and λ related to the plume centreline and estimated with the 2nd moment
transversal profiles (data are shown in Figure 4.2). Profiles are normalised as
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Figure 4.2: Vertical evolution of the model parameters λ2 and M2 for the case of
the GLS. Parameters are inferred from profiles of concentration variance (n = 2),
for two distances from the source: x/δ = 0.625 and x/δ = 2.5.

C/Chs, being C the mean concentration and Chs the mean concentration on the
plume centerline (at the source haight). The model equations used are reported
in Yee et al. (1994).

The relative error on crosswind profiles, calculated as

ER = 100(ExpValue− ModelledValue)/ExpValue, (4.12)

is shown for each shape parameter in Figures 4.3d,4.3e, 4.3f. An overall agree-
ment is observed between the model and the observations, yet the relative error
grows increasing the moment order, reaching the 30% in the kurtosis profile.
The mean and maximum ER along the streamwise direction is shown in Figures
4.3g, 4.3h, 4.3i. Speaking about fluctuation intensity and skewness, the mean
ER in the near field (viz. from x/δ = 0.625 to x/δ = 2.5) is 5 and 10% re-
spectively, but it rises starting from x/δ = 2.5. In particular, the model shows
significant differences with the experimental measurements in the far field. An
opposite behaviour is observed for the kurtosis, for which the greater errors are
located close to the source. This augmentation of the relative error can be ex-
plained with the emergence of off-centreline peaks in the moments transversal
profiles, that appear starting from a distance of x/δ = 2.5 from the source (see
measured profile of the rms in Fig. 3.20 and of the third and fourth moments
in Figures 3.22 and 3.24 respectively).

Concentration PDFs were calculated analytically according to Yee et al.
(1994) and are reported in Figure 4.4, where they are compared to the mea-
sured PDFs. PDFs are situated on the plume centreline, at two distances from
the source (x/δ = 1.25 and x/δ = 5). Concentration is non-dimensionalised as
C/Chs. Also in this case, the agreement with the model is satisfactory in the
near field. In the far field, the modelled PDF has the same qualitative shape of
the experimental one but is shifted to lower levels of concentration.

This analysis showed that, for a pollutant plume dispersion within a turbu-
lent boundary layer, the model parameters M and λ are highly dependent on
the vertical coordinate. However, considering concentration at a fixed distance
from the ground only, comparisons between model predictions and experimen-
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Figure 4.3: a), b), c) Comparison between measured and modelled crosswind
profile of concentration statistics for the GLS case. Graphics refer to the position
x/δ = 0.625 and source elevation (z/delta = 0.0625). d), e), f) Relative Error
(ER) in crosswind profiles. g), h), i) mean and max ER along the streamwise
axis, at the plume centreline.
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Figure 4.4: Comparison between modelled and measured concentration PDFs.

tal results show overall good agreement in the near field. This model can be
applied for operational purposes to predict pollutant concentration moments at
a fixed distance from the ground. This may be the case for example of ground
level concentrations. On the other hand, if the purpose is to achieve a complete
description of the concentration field, the model should be reformulated to con-
sider the variability of the fundamental parameters in the vertical direction.

4.4 MEANDERING PLUME MODEL 3D

In developing a three-dimensional formulation of the fluctuating plume model,
we aim in defining a parametrisation that allows a reliable representation of
the inhomogeneity and anisotropy of the dispersion process within a turbulent
boundary layer.

By assuming the statistical independence of the plume meander in the lateral
and vertical directions, pm is splitted in two components pym and pzm :

pm(x, ym, zm) = pym(x, ym)pzm(x, zm). (4.13)

We than need to define the concentration statistics cn
r in the relative coordinate

system (ym, zm) as

cn
r (x, y, z, ym, zm) =

∫
∞

0

cnpcr(c; x, y, z, ym, zm)dc, (4.14)

where pcr is the Gamma probability density function defined in Equation 4.4.
To take into account the anisotropy and inhomogeneity of the small scale fluc-
tuations we parametrise the relative mean concentration cr as :

cr =
Mq

u
pyr(x, y, ym) pzr(x, z, zm), (4.15)

where pyr and pzr are the lateral and vertical components of the concentration
distribution around the plume centre of mass. The PDFs pyr and pzr are defined
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as follows:

pyr =
1√

2πσyr

exp

(
− (y − ym)

2

2σ2
yr

)
, (4.16)

pzr =
1√

2πσzr

{
exp

(
− (z − zm)

2

2σ2
zr

)
+ exp

(
− (z + zm)

2

2σ2
zr

)}
, (4.17)

where σ2
yr and σ2

zr are the horizontal and vertical variance of the plume relative
dispersion around its centre of mass in the horizontal and vertical direction,
respectively.

Since the turbulence is assumed to be homogeneous in the horizontal planes,
the crosswind distribution of centroid locations is Gaussian:

pym(x, ym) =
1√

2πσym

exp

(
− (ym − ys)

2

2σ2
ym

)
, (4.18)

with σym being the centroid horizontal spread.
Conversely, the turbulence in the vertical direction is not homogeneous. For

this reason, previous authors have estimated pzm by simulating the trajectories
of the cloud centroid using a Lagrangian stochastic model (Reynolds (2000),
Franzese (2003)). Here, to take into account this dishomogeneity and to keep
the model as simple as possible, to a first approximation we parametrise pzm

through the bi-Gaussian distribution:

pzm(x, zm) =
1√

2πσzm

{
exp

[
− (zm − zs)

2

2σ2
zm

]
+ exp

[
− (zm + zs)

2

2σ2
zm

]}
, (4.19)

where σzm is the centroid vertical spread and zs is the vertical distance of the
source from the ground level.

The choice of a bi-Gaussian shape of pzm instead of a simple Gaussian de-
serves to be discussed. Since the effect of the ground makes ineffective the
hypothesis of homogeneous turbulence along the z-coordinate, the model has
to include the reflection of the plume in order to assure the mass conservation.
Fig. 4.5 shows the mass-rate evaluated along the longitudinal coordinate

Mq(x) =

∫ +∞

−∞

∫ +∞

0

c1(x, y, z)u(z)dydz. (4.20)

It is worth noting that the bi-Gaussian keeps the mass-consistence, whereas the
simple Gaussian is not able to achieve this condition: far from the source, where
the reflection effect is more important, we observe a loss of (adimensioned) mass.

The n-th concentration moment as function of the space position (x, y, z) is
given by:

cn(x, y, z) =

(
Mq√

2πσyru

)n
1

λn

Γ(n + λ)

Γ(λ)

σyr(
nσ2

ym + σ2
yr

)0.5

× exp

[
− n(y − ys)

2

2
(
nσ2

ym + σ2
yr

)
] ∫

∞

0

pn
zr(x, z, zm)pzm(x, zm)dzm. (4.21)
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Figure 4.5: Adimensioned mass-rate in the streamwise direction x/δ.

Now we need to parametrise the dispersion coefficients σy , σyr, σym, σz , σzr , σzm

and the model parameter icr. The centroid and relative variances are related
with the global dispersion coefficient in the following way:

σ2
y = σ2

ym + σ2
yr, (4.22)

σ2
z = σ2

zm + σ2
zr. (4.23)

The global variance can be parametrised by an equation derived from Taylor’s
statistical theory, taking into account the initial spread σ0 (equal to the source
diameter). The variances σy and σz are a function of the turbulent velocity fluc-
tuations (σv and σw), the temporal coordinate t and the Lagrangian timescale:

σ2
y = σ2

0 + 2σ2
vTLv

{
t − TLv

[
1 − exp

(
− t

TLv

)]}
, (4.24)

σ2
z = σ2

0 + 2σ2
wTLw

{
t − TLw

[
1 − exp

(
− t

TLw

)]}
. (4.25)

As customary, the Lagrangian timescales are parametrised as:

TLv =
2σ2

v

C0ε
(4.26)

TLw =
2σ2

w

C0ε
, (4.27)

where C0 is the Kolmogorov constant and ε is the dissipation rate of turbu-
lent kinetic energy from experimental measurements (see Figure 2.5.1). The
transverse relative variance, σ2

yr, is parametrised as follows:

σ2
yr =

(Cr/6)ε (ts + t)
3

{
1 + [(Cr/6)εt2/ (2σ2

vTLv)]
2/3
}3/2

, (4.28)

where ts =
[
σ2

0/(Crε)
]1/3

depends on the source size σ0 and Cr is the
Richardson-Obukhov constant taken equal to 1.4. This parametrisation respects
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the inertial range relative dispersion at small time (σ2
yr ∼ Crε(ts + t)), and it

asymptotically tends to Taylor’s limit at large time (σ2
yr = 2σ2

vTLvt).

The same parametrisation can not be adopted for the vertical relative dis-
persion coefficient σ2

zr since the reflection on the ground reduces the influence of
the meandering process more quickly in the vertical direction (Franzese (2003),
Mortarini et al. (2009)). To resolve the problem of the effect of the surface,
the parametrisation adopted in the model introduces a timescale Tm represent-
ing the time when the meandering process becomes negligible with respect to
the relative dispersion. Tm is assumed to be proportional to the Lagrangian
macroscale, Tm = αtTLw, where αt is taken equal to 3. This means that when
the plume size is bigger or equal to the Lagrangian macroscale, the meandering
motion in the vertical direction is switched off. The behaviour of σ2

zr corre-
sponds to the inertial dispersion formulation at small times and is in agreement
with the limit of Taylor’s formula at large times:

σ2
zr =

(Cr/6)ε (ts + t)
3

{
1 + [(Cr/6)εt2/ (2σ2

wTLw)]
2/5
}5/2

exp

[
−
(

t

Tm

)2
]
+ (4.29)

2σ2
wTLw

{
t − TLw

[
1 − exp

(
− t

TLw

)]}{
1 − exp

[
−
(

t

Tm

)2
]}

.

Eqs. (4.24) and (4.25) differs from the equations presented by other authors
(Franzese (2003); Luhar et al. (2000)) since they introduce an initial spread σ2

0

equal to the source size. If σ2
0 is not taken into account, close to the source,

where the particle flight time t is very small, the relative dispersion can be
larger than the global dispersion and, consequently, the meandering coefficient
becomes unrealistically negative. Figs. 4.6a and 4.6b show that in the vertical
direction the relative coefficient approaches the global coefficient more quickly
and far from the source the meandering influence becomes negligible.
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Figure 4.6: Modeled transversal and vertical dispersion coefficients for the ele-
vated source with diameter 3 mm and C0 = 4.5.
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4.4.1 Results

In order to reduce the influence of the shear we consider the plume development
and we evaluate the velocity field at the plume centre of mass, zm(x), that is a
function of the longitudinal coordinate x.

The reliability of the model defined by the Eq. (4.21) is tested against the
experimental measurements of concentration we carried out in the wind tunnel.

Centred concentration moments up to the fourth order are related to the
moments cn about zero by means of the following relations:

m1 = C = c1

m2 = σ2
c = c2 − C2

m3 = c3 − 3c2C + 2C3

m4 = c4 − 4c3C + 6c2C2 − 3C4

and they are adimensionalised as:

m∗

i = mi
1/i u∞δ2

Mq
. (4.30)

Estimate of Lagrangian Kolmogorov constant

The Lagrangian Kolmogorov constant C0 determines the effective turbulence
diffusion in velocity space. Although it should be a universal constant, the
value differs according to the authors. Lien and D’Asaro (2002) carried out a
series of direct numerical simulations with increasing large micro-scale Reynolds
number and estimated C0 as equal to 6±0.5. Rizza et al. (2006) estimated C0 =
4.3±0.3 by tracking an ensemble of Lagrangian particles in a planetary boundary
layer simulated through large-eddy simulation. Du and Sawford (1995) found
C0 = 3.0 ± 0.5 in decaying grid turbulence. In conclusion, the estimated values
of Kolmogorov constant vary within the range 2.0 − 7.0.

Following a common approach, we treat C0 as a free parameter and we set
its value in order to minimize the difference between the modelled and measured
mean concentration, evaluated in Euclidean norm ||cexp − cmod||2. We find that
C0 = 4.5 is the value that better satisfies this criterion.

Dispersion coefficients σy/δ and σz/δ are reported in Figures 4.7a and 4.7b.
It is shown that some discrepancies occur between measured and modelled dis-
persion coefficients, especially in the far field, causing a decrease in the accuracy
of the model.

Estimate of the intensity of relative concentration fluctuations

While in homogeneous and isotropic turbulence the intensity of relative con-
centration fluctuations icr is generally assumed to be only dependent on the
x-coordinate, in the TBL it is also function of the distance from the ground and
of the source elevation.

To parametrise icr for the TBL, we adopted a procedure that consists in
evaluating the vertical and transversal profiles of the modelled concentration
standard deviation (σmod

c ) and to compare them with the experimental ones
(σexp

c ). For each profile we choose the value of icr that minimize the Euclidean
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Figure 4.7: Global dispersion coefficients σy/δ and σz/δ, comparison between
the experimental measurements and the model with C0 = 4.5.

norm ||σexp
c − σmod

c ||2 and, as a consequence, we obtain the values of icr that
globally fit the experimental results. For each distance downwind, a series of
values of icr is calculated as function of x/δ and the following bonds are:

at
x

δ
→ 0 icr → 0,

at
x

δ
→ ∞ icr → ic =

σc

C
6= 0.

(4.31)

By applying a least-squares fitting, we derive the following empirical relation-
ship:

icr = xad
p1x

2
ad + p2xad + p3

x3
ad + q1x2

ad + q2xad + q3

, (4.32)

where xad = x/δ is the adimensional longitudinal coordinate.
The consistence of the procedure for the evaluation of icr is verified by com-

paring the results to the experimental values. To calculate the experimental
value of icr we used an equation based on the model distribution and including
a term derived by experiments ((σ2

c/C2)exp):

i2cr =

[(
σ2

c

C2

)

exp

+ 1

]
σyr

(2σ2
ym + σ2

yr)
0.5

σ2
y

[∫
∞

0
pzr(x, z, zm)pzm(x, zm)dzm

]2
∫
∞

0
p2

zr(x, z, zm)pzm(x, zm)dzm

− 1

(4.33)

where (σc/C)exp is the fluctuation intensity measured on the plume centreline
(y = ys, z = zs). The results are reported in Fig 4.8, where the curves of
the intensity of relative concentration fluctuations are shown for the ES and
GLS configurations. We report only the results evaluated by the minimization
technique because they are related to the global behaviour of the model.

In both ES and GLS cases (Figs. 4.8a and 4.8b respectively), icr exhibits an
initial growth and thereafter decreases monotonically to an asymptotic value,
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Figure 4.8: Intensity of relative concentration fluctuations icr vs x/δ. Experi-
mental points are compared to the model of Eq.4.32 (solid line).

which is reached far from the source, consistently with the physics of the phe-
nomenon. The values of the parameters in Eq.4.32 are summarised in Table 4.1,
for ES and GLS sources. We observe that ES and GLS configurations reach
the same asymptotic value of relative concentration fluctuation (at x/δ → ∞,
icr → 0.4).

p1 p2 p3 q1 q2 q3

ES 0.4 -0.7 8.0 -2.5 5.8 1.14
GLS 0.4 1.2 5.0 10.0 -7.2 3.0

Table 4.1: Parameters used in Eq.4.32 to calculate the intensity of relative
concentration fluctuations icr.

In Figs. 4.9 is shown a comparison between the intensity of concentration
fluctuations from experiments ic and the intensity of relative concentration fluc-
tuations icr. Figure 4.9 shows that the bonds in Equation 4.31 are respected
by the model. As expected, in the far field icr tends to ic meaning that relative
dispersion is the only mechanism responsible of the plume dispersion, while in
the near field there is a gap between the experimental ic and the modelled icr

that is due to the meandering motion.
In the next section we verify the suitability of the coupling of Eq. 4.21 with

Eq. 4.32 by comparing the 3rd and 4th numerical concentration moments with
the experimental ones.

We recall that in the following discussion we do not use icr values that
minimize the Euclidean norm, but we compute them through Eq. (4.32). In
this way we privilege the use of a general rule, partly sacrificing the quality of
the results.

Elevated source

The elevated source is located at z/δ = 0.19 and is therefore less affected by the
boundary layer shear, compared to the ground level source.
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Figure 4.9: Experimental intensity of concentration fluctuations ic and modelled
intensity of relative concentration fluctuations icr vs x/δ.

Fig. 4.10 shows the ratio of the central concentration statistics (σc, m
1/3

3 and

m
1/4

4 ) and mean concentration C, evaluated on the plume centreline, as function
of x-coordinate. In spite of some simplifying assumptions, we observe that the
model is able to simulate the influence of the source size and the agreement
between the experimental and numerical results is qualitatively acceptable for
all the moments.
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Figure 4.10: Concentration statistics vs x/δ evaluated at the source location
(ys/δ, zs/δ).

Close to the source, mean concentration profiles do not depend on the source
size (Figs. 4.11a and 4.12a). On the contrary, in the near field the profiles of
σc, m∗

3 and m∗

4 are influenced by the source size. The agreement between the
experimental and modelled values of σc is satisfactory (Figs. 4.11b and 4.12b).
The 3rd and 4th centred moments present a lower accordance, that however can
be still considered fairly good (see Figs 4.11c, 4.11d, 4.12c, 4.12d). We recall
that the second order moments are tuned by a suitable choice of the icr function,
but no adjustment is performed on higher statistics.

Going far from the source, the influence of the source size becomes negligi-
ble and for different diameters the profiles appear quite overlapped. The agree-
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Figure 4.11: Concentration statistics vs y/δ at x/δ = 0.625, z/δ = zs/δ.

ment between the transversal experimental and modelled results is good (see
Figs 4.13a, 4.13b, 4.13c, 4.13d) as well as the vertical profile of C in Fig. 4.14a.
On the contrary, the model is less efficient in predicting the vertical profiles of
σc, m∗

3 and m∗

4 (Figs. 4.14b, 4.14c, 4.14d), since the modelled profiles are shifted
with respect to the experimental ones. We believe that the reason of these dis-
crepancies should be found in the model formulation: when the plume touches
the ground, the hypothesis of indepencency of the horizontal and vertical pdfs
(pyr and pzr) is not suited to describe the anisotropy and inhomogeneity of the
concentration fluctuations.

Ground level source

The influence of the velocity shear on the source located at z/δ = 0.06 (GLS)
is larger compared to that at z/δ = 0.19 (ES) and the inhomogeneity of the
turbulent flow significantly affects the plume dispersion; an evident effect of the
source height on the dynamics is the different shape of the intensity of relative
concentration fluctuations in the two cases (Fig. 4.8).

The modelled profiles of the first fourth moments of the concentration along
x-coordinate, evaluated at the source location (Fig. 4.15), presents a fairly good
agreement with the experimental data both close to the source and in the far-
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Figure 4.12: Concentration statistics vs z/δ at x/δ = 0.625, y/δ = ys/δ.

field. The horizontal profiles of the concentration moments are in very good
agreement within the whole field (Figs. 4.16 and 4.18). The ability of the model
to reproduce the emergence of off-centreline peaks is quite remarkable . The
vertical profiles show a good agreement with the experimental data, except close
to the ground where the overestimation of the meandering process determines
some discrepancies (Fig. 4.17). The significant difference shown by the vertical
profile in the far-field (Fig. 4.20) constitutes a shortcoming of the model that
will be discussed in the next subsection.

Asymptotic behaviour

In the far field (x/δ → ∞) the meandering process becomes negligible and the
relative concentration fluctuation icr approaches ic (Figure 4.9):

icr → ic (4.34)

σzm → 0 (4.35)

σzr → σz (4.36)

In these conditions, the centroid PDF pm approaches a Dirac delta function
and the PDF of the global dispersion (pc) is totally described by the relative
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Figure 4.13: Concentration statistics vs y/δ at x/δ = 3.75, z/δ = zs/δ.

concentration PDF, that assumes the following formulation:

pm → δD (4.37)

pc =
λλ

Γ(Cλ)

( c

C

)λ−1

exp

(
−λc

C

)
(4.38)

The use of a Γ distribution to describe the concentration PDF of a fluctuating
plume is in agreement with the works of many authors (Villermaux and Duplat
(2003); Yee and Skvortsov (2011)).

Now the n-th concentration moment assumes this form:

cn(x, y, z) =

(
Mq

2πσyσzu

)n
1

λn

Γ(n + λ)

Γ(λ)
exp

[
−n(y − ys)

2

2σ2
y

]
(4.39)

exp

(
−n(z + zs)

2

2σ2
z

)(
exp

(
2zzs

σ2
z

)
+ 1

)n

.

After some algebra we obtain the following relation between the first two mo-
ments of concentration:

c2(x, y, z) =
λ + 1

λ
C2(x, y, z) (4.40)
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Figure 4.14: Concentration statistics vs z/δ at x/δ = 3.75, y/δ = ys/δ.

The constant ratio between the variance and the mean concentration represents
a heavy simplification of the model that provides unrealistic results in the far
field. We can recognise this effect in the GLS vertical profiles, where the agree-
ment between the model and experiments is quite unsatisfactory (see Fig. 4.20).

Taking advantage of the self-similarity of ic in the far field (see Section 3.5.2)
we can approximate its dependence on z by the following parametrisation:

icr = ic = a exp

(
b

z

σz

)
; (4.41)

where a = 0.2736 and b = 0.8653. Figures 4.20 shows that the vertical profiles
of the fourth moments of the concentration evaluated by taking into account the
dependence of ic on z present a better agreement with the experimental values.

Concentration probability density functions

The model provides a concentration PDF that is given by Equation 4.1. The
modelled and experimental PDFs are compared in Figs. 4.21, at growing dis-
tances from the source. We also reported the PDF described by a Γ distribu-
tion Yee and Skvortsov (2011) depending on the experimental concentration
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Figure 4.15: Concentration statistics vs x/δ evaluated at the source location
(ys/δ, zs/δ).

fluctuation intensity (σc/C)exp. Close to the source the meandering mechanism
prevails (see Fig. 4.6) and, as consequence, we have high probability that the
concentration assumes values equal to zero (Figs. 4.21a). In the far-field, the
PDF of the plume centroid approaches a Dirac delta distribution and the mean-
dering becomes negligible with respect to the relative dispersion; these effects
are well reproduced by the PDFs in Fig. 4.21b.
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Figure 4.16: Concentration statistics vs y/δ at x/δ = 0.625, z/δ = zs/δ.
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Figure 4.17: Concentration statistics vs z/δ at x/δ = 0.625, y/δ = ys/δ.
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Figure 4.18: Concentration statistics vs y/δ at x/δ = 3.75, z/δ = zs/δ.
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Figure 4.19: Concentration statistics vs z/δ at x/δ = 3.75, y/δ = ys/δ.
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Figure 4.20: Concentration statistics vs z/δ at x/δ = 3.75, y/δ = ys/δ with
icr = f(z/σz).
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Figure 4.21: Experimental and modelled PDF on the mean plume centerline for
the case of the elevated source with diameter 3 mm.
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Chapter 5

MICROMIXING MODEL

5.1 ABSTRACT

A Lagrangian stochastic micromixing model is used to predict the concentration
fluctuations of a continuous release in a neutral boundary layer. Such models
are able to estimate the high order statistics of the concentration by simulating
the combined effect of turbulent mixing and molecular diffusivity. We present
the computational algorithm that implements the Interaction by Exchange with
the Conditional Mean (IECM) model and we compare the numerical solutions
with the experimental values in order to evaluate the reliability of the model.
The influence of the source size on the concentration probability density function
(PDF) in the near and far-field is discussed and some shortcomings of the model
are pointed out.

5.2 INTRO

A Lagrangian stochastic micromixing model aims in simulating the effects of
molecular diffusivity on the pollutant concentration fluctuations. Recent studies
have shown that this model is particularly adapted to describe the concentra-
tion probability density function (PDF) and to estimate higher order moments.
Cassiani et al. (2005a) and Postma et al. (2011a) simulated the dispersion of a
point source in the neutral boundary layer and compared the concentration fluc-
tuation intensity with the experimental profiles provided by Fackrell and Robins
(1982a). The dispersion in the convective boundary layer (Cassiani et al., 2005b)
and in the neutrally stratified canopy flow (Postma et al., 2011b) was also anal-
ysed. To our knowledge the first four concentration moments are numerically
estimated only in homogeneous turbulence (Sawford, 2004), whereas other au-
thors restrict the analysis to the mean and the standard deviation. Here we
evaluate the accuracy of a Lagrangian stochastic micromixing model in esti-
mating the first four concentration moments in a fluctuating plume in neutral
boundary layer, taking advantage of the new experimental results presented.
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5.3 MODEL EQUATIONS

The governing equations of a Lagrangian Stochastic (LS) method simulate the
trajectories of N independent particles representing the real fluid in a statistical
sense. We assume that the evolution of the position X and velocity U of a fluid
element is a continuous Markov process and that the mild regularity condition
is verified. Under these assumptions the following equations govern the motion
of each particle:

dU ′

i = ai(X,U′, t)dt + bij(X,U′, t)dξj , (5.1)

dXi = (〈ui〉 + U ′

i)dt, (5.2)

where Xi is the particle position, U ′

i is the Lagrangian velocity fluctuation rela-
tive to the Eulerian mean velocity 〈ui〉, t is the time coordinate, and dξj is an
incremental Wiener process (Gardiner, 1983) with zero mean and variance dt.
The deterministic acceleration term, ai, is a function of the turbulent statistics
and its simplest three-dimensional solution is given imposing the well-mixed
condition (Thomson, 1987). For a fixed temporal instant and a space position,
if the particle distribution in the domain is homogeneous, each statistic of the
particle velocity has to be equal to the Eulerian velocity statistic. As a conse-
quence, the particles have the same dynamical properties of the fluid. The term
ai is defined by the following equation:

ai = − U ′

i

TLi
+

1

2

∂σ2
ui

∂x
+

U ′

i

2σ2
ui

(
U j

∂σ2
ui

∂xj

)
with i = 1, 2, 3. (5.3)

The stochastic diffusive term bij is defined from the Kolmogorov’s hypothesis of
self-similarity and local isotropy in the inertial subrange (Pope, 1987):

bij = δij

√
C0ε, (5.4)

where δij is the Kroneker delta. We recall that the Lagrangian integral scales
TLi represent the autocorrelation Lagrangian velocity coefficients and are ex-
pressed as function of the velocity variances σ2

ui, of the turbulent kinetic energy
dissipation rate ε and of the Lagrangian Kolmogorov constant C0:

TLi =
2σ2

ui

C0ε
. (5.5)

Equations 5.1 and 5.2 only provide information about first-order statistics,
namely the mean concentration. The simulation of the higher-order statistics re-
quires the introduction of another Markovian state variable, φ, representing the
particle concentration. The evolution of the concentration field is simulated by
a micromixing model, that takes into account the effects of molecular diffusivity
and has to satisfy the following requirements:

1. at large Reynolds number the model do not have to change the mean
scalar field

2. concentration fluctuations are dissipated by the model

3. the scalar field has to be bounded, i.e. the concentration keeps positive
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4. the scalar PDF tends to a Gaussian for statistically homogeneous scalar
fields in homogeneous isotropic turbulence.

Each particle is characterised by a concentration φ, whose evolution can be
simulated according to the Interaction by Exchange with the Mean (IEM) model
or, alternatively, with the Exchange with the Conditional Mean (IECM) model.
In this study, we do not consider IEM model since many authors have already
shown that it is unable to accurately reproduce the moment properties. In fact,
the IEM introduces some spurious fluxes that cause an alteration of the mean
concentration field (Cassiani et al., 2007; Sawford, 2004). The IECM model
instead allows us to avoid this last effect. This approach reduces the particle
interactions to those that have similar position and velocity:

dφ

dt
= −φ − 〈φ|X,U〉

τm
, (5.6)

where 〈φ|X,U〉 is the mean scalar concentration conditioned on the local po-
sition and velocity. The scalar micromixing time τm represents the temporal
scale of molecular diffusion.

The analytical solution of Equation 5.6 is:

φ(t + ∆t) = φ(t) exp

(
−∆t

τm

)
+ 〈φ|X,U〉

[
1 − exp

(
−∆t

τm

)]
, (5.7)

where ∆t is the time-step-length.

5.3.1 Micromixing time scale

The parametrisation of the micromixing time scale τm follows the formulation
proposed by Cassiani et al. (2005a) and is tested in the works of Cassiani et al.
(2007) and Postma et al. (2011a).

The micromixing time is assumed to be proportional to the time scale of the
relative dispersion process (τr) depending on velocity variance, mean turbulent
kinetic energy dissipation rate, source size and particle flight time. τm can be
written as:

τm = µtτr, (5.8)

where µt is an empirical constant depending on the turbulence and on the source
configuration, treated as a free parameter. The parametrization of τr depends on
the instantaneous plume spread σr and on the root mean square of the relative
fluctuations σur, that represents the energy responsible for the expansion of the
plume about its instantaneous centre of mass:

τr = σr/σur. (5.9)

Following Franzese’s formulation (Franzese, 2003), σur is modelled considering
the variance of the turbulent velocity σ2

u =
∑

σ2
ui/3 = 2q2/3 and the length

scale of the most energetic eddies L:

σ2
ur = σ2

u

(σr

L

)2/3

, (5.10)

L =

(
3σ2

u/2
)3/2

ε
. (5.11)
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When the instantaneous plume spread σr becomes equal to the size of the largest
eddies L, all the energy contributes to the plume expansion and for σr > L the
constraint σ2

ur = σ2
u is imposed.

The instantaneous plume spread is modelled as:

σ2
r =

d2
r

1 + (d2
r − σ2

0)/(σ2
0 + 2σ2

uTLt)
, (5.12)

where TL = 2σ2
u/(C0ε) is the Lagrangian time scale averaged on the three space

coordinates. The root-mean square two-particle separation in the instantaneous
plume, dr, is parametrised by Richardson’s law:

dr = Crε(t + ts)
3, (5.13)

where Cr is the Richardson-Obukhov constant, ts =
[
σ2

0/(Crε)
1/3
]
is the inertial

range formulation for dispersion from a finite source size (Franzese, 2003) and σ0

represents the initial source distribution . The discretization of dr is commonly
obtained by linearization:

d2
r(t + ∆t) = d2

r(t) + 3Crε(t + t0)
2∆t, (5.14)

with the initial condition d2
r(t = 0) = σ2

0 . The upper bound of the micromixing
time is the turbulence time scale 2q2/(Cφε) where q2 is the turbulent kinetic
energy and Cφ is an empirical constant set equal to 2.

5.3.2 Description of SLAM model

The coupling between the Lagrangian stochastic model (Equations 5.1 and 5.2)
and the micromixing model (5.6) is performed by the numerical code SLAM,
Safety Lagrangian Atmospheric Model (Vendel et al., 2011). SLAM is a model
developped in the team AIR (Atmosphere Impact Risk) of the Laboratoire de
Mécanique des Fluides et d’Acoustique de l’Ecole Centrale de Lyon, France.

The micromixing time and conditional mean concentrations are estimated
during a pre-processing step. The trajectories of a small ensemble of particles
released at the source location are computed and the cell-centered averages of τm

and 〈φ|X,U〉 are evaluated at all the space discretization elements of a suitable
computational grid. Afterwards, the effects due to the molecular diffusivity on
the concentration fluctuations are taken into account by simulating the influence
of the background particles. This strategy allows us to obtain a multitude
of concentration values and, therefore, suitably approximate the concentration
PDFs.

The numerical experiments follow the approach of Cassiani et al. (2007):
at the initial time-step a set of particles is uniformly distributed in the whole
computational domain and each particle moves in accordance with the Equa-
tions 5.1 and 5.2. During this process, the concentration associated to each
particle changes (Equation 5.6) assuming a large variety of values that allows
us to compute the high order statistics. In order to increase the solution accu-
racy, the concentration is averaged on the simulation time. A suitable choice of
the boundary conditions allows us to correctly reproduce the dispersion of the
passive scalar and keep constant the number of particles during the simulations:

• top and lateral boundaries: the particle velocity and position are perfectly
reflected and the concentration is absorbed;
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• ground: particles are elastically reflected and conserve their concentration;

• inflow/outflow: periodic conditions are applied to the particle position
and the absorption of the concentration is imposed;

• source: the influence of the source is taken into account by marking the
near-source particles with a scalar concentration φsrc:

φsrc =
Mq

2πσ2
0ux

exp

(
− r2

2σ2
0

)
, (5.15)

where Mq is the source mass-flow, ux is the horizontal mean velocity at
the source location (xs, ys, zs) and r2 = (y−ys)

2 +(z−zs)
2 is the distance

from the particle position to the source in the yz-plane.

The computational algorithm is made of the following steps:

1. Pre-processing: simulation of the trajectories of an ensemble of particles
released at the source location (Eqs. 5.1 and 5.2);

• Simulation of the trajectories of an ensemble of particles released at
the source location;

• Estimate of the conditional mean concentration 〈φ|X,U〉 and mi-
cromixing time τm;

2. Simulation of the concentration fluctuations (Eqs. 5.1, 5.2 and 5.6);

• Instantaneous release of a uniform particle distribution in the whole
domain

• Initialization of particle properties (X, U, φ);

• Main time loop:

– Loop on all particles:

∗ Update particle velocity and position

∗ Apply boundary conditions

∗ Update particle concentration φ

– Update cell-centered statistics;

• Update time averaged statistics.

Such micromixing model requires the tuning of some free parameters in
order to get a suitable accuracy in the solutions (Postma et al., 2011b): the
Kolmogorov constant C0, that influences the Lagrangian integral scales, the
Richardson constant Cr and the micro-mixing constant µt, that affects the mi-
cromixing time scale, and the initial source distribution σ0, that linearly depends
on the source diameter ds. It is worth noting that this approach requires a large
amount of computational resources due to the elevated number of particles.
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5.4 NUMERICAL EXPERIMENTS

The ability of the Lagrangian stochastic micromixing model SLAM to estimate
the concentration fluctuations was investigated. In the numerical experiments
we simulated the dispersion of a fluctuating plume produced by a continuous
release from a point source in the neutral boundary layer and we compared the
numerical results with the experimental measurements that we performed in
wind tunnel.

5.4.1 Computational set-up

The numerical experiments concerned a preliminary study of the influence of the
discretization parameters. We carried out some simulations on a uniform grid,
varying the cell dimensions and the time-step length, and we verified that the
solutions are affected by neither the time-step length nor the space discretization
(Figure 5.1a). The same analysis was carried out on the influence of the number
of velocity classes used in the definition of the conditional mean concentration.
Figure 5.1b shows that three classes for each velocity component are sufficient
to assure a suitable accuracy. In order to have a satisfactory agreement with
the experimental measures, the parameters adopted in the simulations are:

1. C0 = 4.5

2. σ0 =
√

2/3ds, ds being the source diameter

3. Cr = 0.3 (Cassiani et al. (2005a))

4. µt = 0.6

5. velocity classes: 3 x 3 x 3.

−0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

50

100

150

200

250

300

350

400

y/δ

M
* 2

 

 

A

B

C

(a) space and time discretisation

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

y/δ

M
* 2

 

 

3 classes

5 classes

(b) velocity classes

Figure 5.1: Non-dimensional concentration standard deviation M∗

2 vs. y/δ at
the source height. (a): x/δ = 0.625, (A) ∆t = 1.0e− 3, ∆x = 0.02, ∆y = ∆z =
5.0e− 3; (B) ∆t = 5.0e− 4, ∆x = 0.02, ∆y = ∆z = 5.0e− 3; (C) ∆t = 1.0e− 3,
∆x = 0.01, ∆y = ∆z = 3.0e − 3; (b) x/δ = 5.0.
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5.4.2 Results

Experimental measurements show that the source size does not affect the mean
concentration, whereas it influences higher order moments. This influence is
significant in the near-field (Figures 5.2 and 5.3) and it gradually becomes negli-
gible for increasing distances from the source (Figures 5.4 and 5.5). In order to
test the reliability of the model, we computed the first four centred moments of
the concentration and we compared them with the corresponding experimental
values after a suitable adimensionalisation:

m∗

i =

[
1

Nc

Nc∑

p=1

(Cp − Cc)
i

]1/i

u∞δ2

Mq
, (5.16)

where u∞ is the velocity at the boundary layer height, Nc and Cc are the number
of particles and the mean concentration in the cell, respectively, and Cp is the
particle concentration. In the near-field (Figures 5.2 and 5.3) the model is able
to reproduce the influence of the source size on the concentration fluctuations
showing a good agreement with the experimental values. In particular, Fig-
ures 5.2b and 5.2d show that the differences in the concentration PDFs due to
the source diameter are correctly simulated. In the far-field (x ∼ 500− 1000ds)
the model suitably simulates the negligibility of the source size on the com-
puted standard deviation and the agreement with the experimental values is
satisfactory both on vertical and transversal profile (Figures 5.4a and 5.4b and
Figures 5.5a and 5.5b). On the contrary, some discrepancies occur on higher
order moments: while experimental profiles show that the source size influence
vanishes in the far-field, in the numerical solutions such effect is delayed. The
numerical solutions overestimate the experimental results and some differences
due to the source diameter persist (Figures 5.4c and 5.4d and Figures 5.5c and
5.5d). Indeed the loss of influence of the source size is delayed with respect to
the experiments.

Let us define the relative difference between the computed moments for the
two source sizes ES 3 mm (ds/δ = 7e − 3) and ES 6 mm (ds/δ = 3.75e− 3) as:

Drel =

√√√√
∫
∞

−∞
[(m∗

i )ES3mm − (m∗

i )ES6mm]2dy
∫
∞

−∞
[(m∗

i )ES3mm]2dy
. (5.17)

We observe that Drel reduces from x/δ = 3.75 and x/δ = 5 (Figure 5.6) as
shown in Table 5.1.

x/δ Drel m∗

3 Drel m∗

4

3.75 0.17 0.36
5 0.12 0.29

Table 5.1: Relative difference between the third and fourth moments at different
distances x/δ.

The reasons for this delay have to be attributed to the shortcomings of
the micromixing model that can be reasonably identified in the approximated
formulation of the micromixing time scale and in an incomplete description of
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Figure 5.2: Non-dimensional concentration statistics vs. y/δ evaluated at the
source height and x/δ = 0.625.
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Figure 5.3: Non-dimensional concentration statistics vs. z/δ evaluated at the
source height and x/δ = 0.625.
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Figure 5.4: Non-dimensional concentration statistics vs. y/δ evaluated at the
source height and x/δ = 3.75.
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Figure 5.5: Non-dimensional concentration statistics vs. z/δ evaluated at the
source height and x/δ = 3.75.
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the conditional mean concentration due to an insufficient number of the velocity
classes. Further developments are needed in order to improve the accuracy of
the solutions. In order to evaluate the accuracy of the model we compute the
relative error between experimental and numerical values:

ER =

√√√√
∫
∞

−∞
[(m∗

i )exp − (m∗

i )mod]2dy
∫
∞

−∞
[(m∗

i )exp]2dy
. (5.18)

Figures 5.7 shows the relative error on the transverse profiles of the concentra-
tion moments at growing distance from the source location. The relative error
of the mean concentration and the standard deviation are bounded in the whole
field and for both source sizes. Conversely, the third and fourth concentration
moments present a low relative error close to the source, but in the far field the
discrepancy between the experiments and the numerical results becomes large.
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Figure 5.6: Non-dimensional third and fourth moments (m∗

3 and m∗

4) of the
concentration vs. y/δ evaluated at the source height and x/δ = 5.

The main disadvantage of the micromixing model is the high computational
cost. A large number of particles is required to get a suitable accuracy in the
numerical solutions, therefore calculations require a large amount of RAM and
an elevated CPU time. This limits the applicability of the model to real scale
problems in complex geometries.

5.4.3 Conclusions and perspectives

The ability of the Lagrangian stochastic micromixing model SLAM to estimate
the concentration fluctuations was investigated. We simulated the dispersion
of a fluctuating plume produced by a continuous release from a point source
in the neutral boundary layer and we compared the numerical results with a
new experimental data set. The numerical solutions show that the model is
able to correctly simulate the concentration statistics in the near-field, repro-
ducing the source size effects on the high order moments. In the far-field the
numerical and experimental values of the mean and standard deviation of the
concentration are in good agreement. Differently the model overestimates the
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Figure 5.7: Transverse profile relative error vs x/δ.

third and fourth moments with respect to the experiments. Moreover, the exper-
imental profiles show that the source size influence vanishes in the far-field after
x ≃ 500 − 1000ds, whereas in the numerical simulations such effect is delayed
and it occurs at longer distances. This behaviour shows the shortcomings of the
model and the need of further developments in order to improve the accuracy
of the solutions. The main shortcoming of such model is the high computa-
tional cost. The large number of particles, required to get a suitable accuracy
in the numerical solutions, produces a large request of RAM and elevated CPU
time that limits the applicability of the model to real scale problems in complex
geometries.

Nevertheless further developments are required in order to increase the accu-
racy for higher concentration moments, namely the third and fourth moment. In
particular, a more precise parametrisation of the micromixing time scale should
be considered. We can identify three points that are critical in the present
formulation of the model and that deserve a deeper analysis:

• the evaluation of the Eulerian length scale (Eq. 5.11) provides a significant
overestimation of the real value

• the parametrisation of the instantaneous plume spread (Eq. 5.12) overes-
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timates the meandering mechanism in the far-field

• the choice of turbulence time scale 2q2/(Cφε) as upper boundary of the
micromixing time can introduce spurious fluctuations on the plume bor-
ders.



Chapter 6

CONCLUSIONS

Several modelling approaches have been developed to satisfy the need of predict-
ing the Probability Density Function (PDF) of the concentration of a passive
scalar downwind a source of pollutant within the turbulent boundary layer.
This research provided a complete experimental data-set for the validation of
dispersion models, where the concentration and the velocity fields are accurately
described both spatially and temporally. The data-set was used to test a mean-
dering plume model and a Lagrangian stochastic model.

The velocity field in the TBL over a rough wall was investigated by means
of Hot-Wire Anemometry (HWA) and Particle Image Velocimetry (PIV) to
provide a detailed analysis of its temporal and spatial structure. We measured
velocity statistics, including Reynolds stresses and velocity skewness, two-points
correlations, PDFs and spectra. All these statistics are essential in the under-
standing of the structure of the TBL. By means of comparisons with experiments
carried out by other authors, we could verify that we were reproducing the main
features of a TBL (i.e. the mean velocity logarithmic profile, the equality be-
tween production and dissipation, the Gaussian form of velocity PDFs, the
−5/3 power law of velocity spectra in the inertial subrange). Thanks to these
comparisons we could also point out some of the shortcomings of the similar-
ity theory. In particular, we focused our attention on Eulerian Integral Length
Scales (EILS), which provide much information about the structure of our TBL.
We could measure vertical profiles of EILS, which were evaluated in x, y and
z directions for the three velocity components. The scales were measured with
HWA and PIV and the results provided by the two techniques were shown to
be in good agreement. From the analysis of the integral lenght scales emerges
the great complexity of the velocity field. There exist a great variety of length
scales in our boundary layer and only one of them, i. e. Lww(z), scales with z
according to the statement of the similarity theory. Lagrangian time scales are
key parameters of the flow governing the dispersion mechanisms. We estimated
their value by means of two different parametrisations usually adopted in the
literature, and verified that the two parametrisations are consistent one to the
other for a value of the Kolmogorov constant C0 equal to 4.5.

A detailed description of the temporal and spatial evolution of a fluctuat-
ing plume emitted from a point source was provided. The source was placed
within the turbulent boundary layer and the emission was neutrally buoyant and
passive. Concentration measurements were carried out using a fast flame ionisa-
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tion detector. The experimental protocol and the calibration procedure adopted
were described to make clear how we faced some of the problems that appear
when dealing with highly intermittent signals. We also discussed the influence
of atmospheric aerosol sampling, the seasonal variation of atmospheric aerosol
and how their sampling can enable the measurement of third and fourth concen-
tration moments. From the concentration signals recorded, we could calculate
concentration PDFs and moments up to the fourth order with a good precision.
A data set was created that includes profiles of concentration statistics at grow-
ing distances from the source, in the vertical and transversal directions. We also
measured spectra, intermittency factor, intensity of concentration fluctuations,
concentration variance dissipation and peak values.

We discussed the influence of the source on the dispersion by considering
three main aspects: the source elevation, the source size and the gas emission
velocity. To carry out this analysis we adopted the framework developed by
Gifford (1959), who considers the dispersion of a plume to be produced by two
contributions, the meandering motion of the centre of mass and the relative
dispersion, and we interpreted these phenomena in the light of the relation be-
tween the scales of the plume and those of the velocity field. Source elevation
and size have a strong influence on concentration statistics, as already demon-
strated by Fackrell and Robins (1982a). We extended their analysis to third
and fourth concentration moments. We observed that an emission velocity that
is isokinetic with the external flow do not minimise the effect of the source in
the dispersion process, and that even sources that are normally considered as
point source (having a ratio d/δ close to zero) generate a wake that interacts
with the pollutant dispersion in the near field. At last, we showed that the
moments of concentration and the PDFs can be effectively reproduced by a
Gamma distribution, which also reproduces the differences due to the source
size and elevation.

Two modelling approaches have been adopted to interpret the experimental
results: a meandering plume model and a Lagrangian stochastic model with
a micromixing scheme. A simple two-dimensional meandering plume model is
used to study the evolution of the model parameters in transversal and stream-
wise directions, for the three source configurations. Subsequently, a three di-
mensional model is proposed to reproduce the inhomogeneity and anisotropy of
the dispersion within a turbulent boundary layer, with a new parametrisation
for the intensity of relative fluctuations. To account for the presence of the
ground, the PDF of the vertical displacement of the centre of mass is assumed
to be a Gaussian distribution with reflection on the wall. The comparison with
the experiments is satisfactory, even if the model is less efficient in reproducing
the vertical profiles of the concentration statistics. We believe that this is due
to the hypothesis of indepencency of the horizontal and vertical PDFs, which
becomes too hazardous when the plume strongly interacts with the ground.

Finally we used a micromixing Lagrangian stochastic model to evaluate high
order statistics of the concentration field. The model reproduces the features of
the concentration field and the differences in the statistics profiles due to the
source size. In this study, for the first time, this modelling approach was adopted
to predict the spatial distribution of third and fourth moments of concentration
within an inhomogeneous and anisotropic turbulent flow. The present model
formulation, however, shows some difficulties in correctly reproduce the decay
of third and fourth moments in the far field.
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Figure 7.1: Vertical profiles of non-dimensional concentration standard devia-
tion for the elevate sources, at various distances downwind. Profiles were mea-
sured on the plume axis. Blue circles: source diameter 6 mm; red triangles:
source diameter 3 mm.



7.1. VERTICAL PROFILES OF CONCENTRATION STATISTICS 147

0 200 400 600 800
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

σ
c
* = σ

c
/∆ c

z/
δ

 

 

GLS 3 mm

(a) x/δ = 0.3125

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

σ
c
* = σ

c
/∆ c

z/
δ

 

 

GLS 3 mm

(b) x/δ = 0.625

10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

σ
c
* = σ

c
/∆ c

z/
δ

 

 

GLS 3 mm

(c) x/δ = 1.25

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

σ
c
* = σ

c
/∆ c

z/
δ

 

 

GLS 3 mm

(d) x/δ = 2.5

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

σ
c
* = σ

c
/∆ c

z/
δ

 

 

GLS 3 mm

(e) x/δ = 3.75

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

σ
c
* = σ

c
/∆ c

z/
δ

 

 

GLS 3 mm

(f) x/δ = 5

Figure 7.2: Vertical profiles of non-dimensional concentration standard devia-
tion for the ground level source, at various distances downwind. Profiles were
measured on the plume axis. The source diameter is equal to 3 mm.
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Figure 7.3: Vertical profiles of non-dimensional third moment of concentration.
Elevated sources at various distances downwind. Profiles were measured on the
plume axis. Blue circles: source diameter 6 mm; red triangles: source diameter
3 mm.
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Figure 7.4: Vertical profiles of non-dimensional third moment of concentration
for the ground level source, at various distances downwind. Profiles were mea-
sured on the plume axis. The source diameter is equal to 3 mm.
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Figure 7.5: Vertical profiles of non-dimensional fourth moment of concentration.
Elevated sources at various distances downwind. Profiles were measured on the
plume axis. Blue circles: source diameter 6 mm; red triangles: source diameter
3 mm.
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Figure 7.6: Vertical profiles of non-dimensional fourt moment of concentration
for the ground level source, at various distances downwind. Profiles were mea-
sured on the plume axis. The source diameter is equal to 3 mm.
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